
2.3 Fourier Series in inhomogeneous 1D Heat Equations

Example  6.  We  now  consider  an  inhomogeneous  problem.  For  the  equation  ∂t U [x , t ]  -  α  ∂x,x U [x , t ]=G[x,t] with  the  right-

hand  side  G  we  choose  a  heat  flux  density  that  is  constant  over  time,  so  that  G[x,t]=  0.6  (UnitStep[x-L/4]-UnitStep[x-3L/4])

(in  C 0/s).  We  also  choose  as  initial  condition  U[x,0]=0  for  x  in  [0,L]  and  as  last  Neumann  boundary  conditions.  The  model

describes  a  uniform  heating  of  our  copper  rod  around  the  center  of  the  rod,  which  is  otherwise  thought  to  be  perfectly

insulated.  (Temperature  now  denoted  as  U,  so  that  -  as  long  as  the  animation  above  is  still  running  -  there  is  no  naming

conflict).  

We  start  with  an  approach  using  “variation  of  the  constants”,  i.e.  we  use  the  solution  approach  U[x,t]  = c0[t]+  
∑n=1

∞ cn[t]

Cos[nx/L], insert  this  into  the  equation  and  use  the  boundary  and  initial  conditions  (please  carry  out  for  practice).  

This  results  in  cn ' [t]  +  (α n ^ 2 π^ 2) /L ^ 2 cn[t]  =  gn  for  n>0,  c0[t ] = g0 t.  The  constants  gn  denote  the  Fourier  cosine  coeffi -

cients  of  the  inhomogeneity  G,  g0 the  mean  value  of  G.  Calculation  for  G[x,t]  with  L=1  m  and  α :=117  10^(-6)  m^2/s  as  above

results  in c0[t] = g0 t (from  c0’ [t]  = g0 and  c0[0]=0)

In[10]:= L = 1;

G[x_ ] = 6 / 10 UnitStep [x - L / 4] - UnitStep [x - 3 / 4 L]

g[n_] = 2 / L Integ rate G[x] Cos n Pi x / L, {x, 0, L}

g0 = 1 / L Integ rate [G[x] , {x, 0, L}]

Plot G[x], {x, 0, L}, PlotLabel → "G[x]", ImageSize → Small 

Out[11]=

3

5
- UnitStep -

3

4
+ x + UnitStep -

1

4
+ x

Out[12]=

6 - Sin 

n π

4
 + Sin 

3 n π

4


5 n π

Out[13]=

3

10

Out[14]=

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

G[x]

In[15]:= sol := DSolve D[c[n, t], {t, 1}] + α n^2 Pi ^2  L^2 c[n, t] ⩵ g[n],

c[n, 0] ⩵ 0, c[n, t], {n, t}

ccoeff [n_, t_ ] = sol 〚1, 1, 2〛
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We  consider  a  partial  sum  of  the  Fourier  series  of  the  exact  solution  for  the  problem  and  plot  it.  Only  every  fourth  Fourier

coefficient  is  non  -  zero.  In  order  to  reproduce  the  step  -  like  inhomogeneity  well,  we  choose  a  higher  order  (m  =  30)  of  the

trigonometric  polynomial  to  approximate  the  heat  flux  density  and  a  corresponding  order  of  the  trigonometric  approxima -

tion  polynomial  for  the  solution.  The  "step  form"  of  the  initially  inhomogeneity  remains  largely  intact  in  the  solution  for

quite  some  time  before  the  heat  balance  takes  effect.
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In[17]:= U[m_, x_, t_ ] := g0 t + Sum ccoeff [n, t] Cos n Pi x / L, {n, 1, m}

Plot3D N[U[30, x, t]], {x, 0, L}, {t, 0, 600 },

PlotRange → All, AxesLabel → "Position x in m ", " Time t in s ", "U in C
0
",

AxesStyle → Directive [Black , 12 ], ViewPoint → {- 2, 2, 3},

Ticks → {{0.0, 0.5, 0.75 }, {60, 180, 300, 600 }, {0, 100, 200, 300 }}

Out[18]=

Here  again  the  temperature  evolution  as  an  animation  (due  to  the  approximation  of  approximation  of  G  by  a trigonometric

polynomial,  we  have  negative  temperatures  U at the  edge  and  a "ripple".  Both  effects  are  due  to the  Gibbs  phenomenon.  

A  mathematically  precise  treatment  of  differential  equations  with  discontinuous  right-hand  sides,  such  as  G  here,  is

possible  within  the  framework  of distribution  theory  (see[1]).

In  the  right  graphics  the  temperature  development  is  shown,  smoothed  by  arithmetic  averaging  of  the  partial  sums  of  the

result  at  some  distance  from  the  directly  heated  interval  [L/4,3L/4].  We  see  an  approximately  linear  increase  in the  tempera -

ture,  which  becomes  stronger  as you  move  closer  to the  interval  that  is heated  (Test  it yourself.)  Here  we  look  at x=L/5:

In[  ]:= a1 = Animate Plot N[U[30, x, t]], {x, 0, 1}, PlotRange → {- 2, 260 },

PlotStyle → Directive Blue , Thickness [0.015 ], ImageSize → Small , {t, 0, 600 },

AnimationRepetitions → 1, AnimationRate → 5, RefreshRate → 50 ;

Usmoothed [m_, x_, t_ ] := g0 t + Sum ccoeff [n, t] (1 - n / (m + 1)) Cos n Pi x / L, {n, 1, m}

a2 = Plot N[Usmoothed [30, L / 5, t]], {t, 0, 600 }, PlotRange → {0, 200 },

PlotStyle → Directive Blue , Thickness [0.008 ], PlotLabels → {"U[30,L/5,t]"};

GraphicsRow [{a1, a2}]

Out[  ]=
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And  the  final  test  that  everything  is correct:  The  mean  temperature  after  600  s corresponds  to the  heat  supplied  

corresponding  to 0.3  C 0/s on  average  for  the  whole  rod  with  the  assumed  perfect  insulation  and  the  differential  

equation  as well  as the  initial  and  the  boundary  conditions  are  fulfilled:
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Example  4.  For  EMC  radiation  measurements  in the  GHz  range , you  simply  avoid  sampling  rates  of several  

gigasamples  per  second  by  using  bandpass  filters.  For  example,  bandpass  filters  with  a bandwidth  of 1 MHz  in 

subbands  are  available  as analog  circuits  to achieve  the  filtering  in advance  to a DFT.     

Then,  with  only  a 512  - point  DFT  and  an observation  time  of T=0.2  ms  per  frequency  band,  i . e . approximately  

2.5  MHz  sampling  frequency  N/T,  you  achieve  a frequency  resolution  1/T  of about  5 kHz.  The  analysis  of the  

subbands in a measurement  lab  can  then  be put  together  to form  an overall  picture  ("Undersampling Solution  for

High  Frequency  FFT  Analysis").  This  saves  a lot  of time  and  costs  for  such  radiation  measurements.

We  look  at the  DFT  magnitude  spectrum  of such  an example  in a single  subband of width  1 MHz,  which  shows  that  

the  alias  effect  must  be carefully  considered  when  to make  statements  with  correct  frequency  assignments.   It is 

assumed  that  the  signal  is in the  frequency  band  [1GHz,  1GHz  + 1MHz],  e.g.  generated  at the  output  of a corre -

sponding  bandpass  filter.  

In[  ]:= T = 0.2 × 10^ (-3);

NN = 512; (* T observation time, NN number of samples

(NN instead of N here, since N is protected by Mathematica ) *)

expml2 = Table [Cos[2 Pi (10^9 + 5000 ) n T / NN] + 4 Cos[2 Pi (10^9 + 25 000 ) n T / NN],

{n, 0, 511}];(* high frequency signal *)

We  are  therefore  looking  at the  superposition  of two  high  - frequency  oscillations  in the  GHz  range.   We  then  plot  

the  entire  DFT  magnitude  spectrum  as a polygonal  curve  as well  as the  relevant  parts  of it and  see  how  the  fre -

quency  assignment  in the  example  has  to be done.  We  have  taken  only  512  samples  of the  signal  in the  time  T = 0.2  

ms.

In[  ]:= absdft = Abs[Fourier [expml2, FourierParameters → {-1, -1}]];

p1 = ListLinePlot %, PlotRange → All, PlotStyle →

Directive [Blue, Thickness [0.008 ]], PlotLegends → Placed "T=0.2 10-3,

N=512", Above ;

list1 = Table [absdft 〚n〛, {n, 181, 200}]; (* Extraction of part of the DFT list*)

list2 = Table [absdft 〚n〛, {n, 321, 340}];

p2 = ListLinePlot [list1,

PlotStyle → Directive [Blue, Thickness [0.008 ]], PlotRange → All,

DataRange → {181, 200}, Axes → {True, False }, PlotLegends → Placed [{"DFT

section"}, Above ]];

p3 = ListLinePlot [list2,

PlotStyle → Directive [Blue, Thickness [0.008 ]], PlotRange → All,

DataRange → {321, 340}, Axes → {True, False }, PlotLegends → Placed [{"DFT

section"}, Above ]];

GraphicsRow [{p1, p2, p3}, ImageSize → Full ]

Out[  ]=
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Frequency  assignment:  The  two  "peaks"  of height  2 belong  to the  oscillation  with  frequency  10^9  + 25000  Hz  and  

amplitude  4. 

In Mathematica,  compared  to the  notation  in[1]  they  have  a number  increased  by 1. The  peaks  with  numbers  188  

and  326  therefore  belong  - this  is where  the  alias  effect  comes  into  play  - to 4 Cos[2  π (10^9  + 25000)  t] = 4 Cos[(325  

+ 390*N) ω0t] with  ω0 = 2 π/T  = 2 π*5*10^3  rad/s,  T = 0.2*10^(-3)s  observation  time  as above,  because  187  = -325  + 

512  and  (325  + 390*512)*5*(10^3)  = 1000025000.  The  peak  with  the  number  188  in Mathematica  then  belongs  as an

alias  to the  oscillation  component  2 Exp[-I  (325  + 390  N)  ω0t] = 2 Exp[+I  (187  - 391  N)  ω0t] in the  Fourier  series  of 

the  T - periodically  extended  signal  . 

In the  same  way,  you  can  assign  the  other  oscillation  frequency  corresponding  to the  two  peaks  with  the  numbers  

192  and  322  and  the  height  1/2.  Please  carry  out  the  small  analog  calculation  yourself.  In particular,  we  note  that  

the  values  associated  with  the  positive  signal  frequencies  with  the  numbers  322  and  326  lie  in the  upper  half  of the  

DFT  spectrum,  while  those  with  the  numbers  188  and  192  are  "alias  values"  of parts  with  negative  frequencies.

The  alias  effect  therefore  sometimes  requires  a little  thought  in order  to assign  the  DFT  line  spectra  to the  correct  

frequencies.  However,  if necessary,  you  can  write  a small  program  for  this.  

Exercise: Consider  (with  pencil  and  paper  if necessary)  which  numbers  have  the  peaks  of a 512-point  DFT  with  

Mathematica  for  an observation  time  T=0.2*10^(-3)  s of an oscillation  with  the  frequency  1001.06  MHz?

Example  5. (Subsampling in digital  transmission  systems)   A decisive  advantage  of the  alias  effect  with  a DFT  is 

found  in any  kind  of digital  transmission  (WLAN,  mobile  phones,  DVB  etc.).  The  point  is that  the  transmissions  

take  place  in very  high  frequency  bands  outside  the  bandwidth  of the  used  digital  devices  like  phones  et al.  Since  

the  transmission  bands  are  known  at the  receiver  side,  the  signals  are  accordingly  undersampled, what  automati -

cally  can  generate  the  signal  spectrum  in a lower  frequency  band  by aliasing.  For  example,  5G  transmissions  can  

use  frequency  bands  up  to 26 GHz,  while  mobile  phones  at present  have  2.2-2.6  GHz  CPU’s.  For  the  digital  signal  

processing  direct IF subsampling receivers  (IF,  intermediate  frequency)  can  be used  to shift  the  signal  spectrum  

without  analog  mixers  by the  alias  effect  from  a high  to a low  frequency  band,  where  the  phone  signal  processing  

works.  This  reduces  considerably  receiver  complexity,  power  consumption  and  costs  of hardware.  

We  have  seen  that  the  bandwidth  of a segment  of a signal  spectrum  by a DFT  is determined  by N and  T , and  thus  a 

segment  of the  spectrum  is representable  by a DFT  without  aliasing.  Not  a priori  determined  is the  position  of  

such  a spectral  part  on  the  frequency  axis.  Its  position  can  be determined  from  a priori  knowledge  or deliberately.  

This  has  disadvantages  in observing  unknown  signals,  but  also  enormous  advantages  in signal  processing  for  

technical  systems  as for  example  in communications  engineering.  Because  there  the  signals  and  the  allocation  of 

signal  frequencies  in the  spectrum  can  be chosen  intentionally.  Thus,  the  DFT  with  subsampling offers  the  

opportunity  to bring  a signal  spectrum  automatically  into  a frequency  band  where  device  processing  works . This  

is one  of the  reasons,  why  digital  transmission  nowadays  is so successful  and  cheap,  because  otherwise  with  

analog  technique  you  would  need  expensive  mixers  to achieve  the  same  by amplitude  modulations.  Modern  

digital  transmission  with  multi-carrier  methods  like  OFDM  transmission  in high  frequency  bands  the  information  

in spectra  of trigonometric  polynomials,  which  can  be reconstructed  with  a DFT  by aliasing  in a desired  lower  

frequency  band.  This  is a cornerstone  in modern  communication  systems.  We  can  see  more  on  this  in [1],  12.3  or 

in a later  booklet  on  Fourier  transforms  and  the  principle  of OFDM  transmissions  with  Mathematica.   
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Now,  we  consider  the  typical  spectral  shape  of a WLAN  pulse , i.e.,  a single  OFDM  symbol,  which  transmits  with  16 

QAM  an information  package.  The  802.11a/g  standard  uses  48 data  subcarriers and  4 pilot  subcarriers. Thus,  for  

the  pulse  a trigonometric  polynomial  of degree  52 is used  to transmit  the  data  in complex  amplitudes  ck . Each  

subcarrier  is a trigonometric  function  of the  form  ck  ⅇ
ⅈ k ω0 t  of  a given  frequency  known  at the  receiver.  There -

fore,  the  receiver  can  reconstruct  the  amplitudes  by discrete  Fourier  transforms  of the  sampled  signal.  The  total

channel  bandwidth  is 20 MHz  with  an occupied  bandwidth  of 16.6  MHz.  You  clearly  see  that  the  blue  spectrum  of 

a transmission,  when  a rectangle  time  window  is used,  has  much  more  out-of-band  transmission  than  the  red  

spectrum,  where  an RC  pulse  shaping  is used.  Thus,  pulse  shaping  is a relevant  topic  in communication  engineer -

ing.  More  on  this  in [1],  12.3.
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Example 14.  Windowed Fourier transform with a DFT, Spectrograms 

In its  classical  form,  the  Fourier  transform  ℱ does  not  allow  for  simultaneous  time-frequency  analysis.  For  exam -

ple,  speech  or a piece  of music  in our  everyday  experience  has  a specific  “time  pattern”  and  at the  same  time  a 

specific  “frequency  pattern”.  However,  the  spectral  function  of a signal  does  not  show  at what  times  and  with  what  

respective  amplitudes  a specific  angular  frequency  ω occurs  in a signal  f , but  rather  accumulates  contributions  of 

the  same  angular  frequency  ω over  the  entire  time  course  of f in ℱ f(ω).  Dennis  Gabor  (1900-1979)  already  noticed  

these  disadvantages  for  signal  processing  purposes,  and  in 1946  in his  work  “Theory  of Communication,”  he 

proposed  time-frequency  localization  through  Fourier  transforms  with  window  functions.

To obtain  information  about  the  “time-frequency  pattern”  of a signal,  one  determines  not  the  spectral  function  of 

the  entire  signal,  but  the  spectral  functions  for  time  segments  of f . Time  segments  of a signal  f are  obtained  by 

multiplying  f with  functions  of finite  effective  duration.  Such  functions  are  referred  to as window  functions  or time  

windows  as considered  above.  We  consider  the  following  example.  

A short-term  model  for  a siren  is approximately  the  function  or chirp  f (t)=A  sin(g(t))  with  g(t)=2πt  (αt+ βt 2) for  0⩽

t⩽10  s and  constants  A,  α , β. The  derivative  of the  argument  g'(t)=2πt(2α+  3βt)  can  be considered  as the  instanta -

neous  angular  frequency  at time  t. The  magnitude  spectrum,  approximately  calculated  with  a DFT  for  paramters 

A=1,  α= 4[1/  s2
], β =-4/15  [1/s3] over  T = 10 s, shows  a multitude  of frequencies  up  to the  maximum  frequency  20 

Hz,  but  not  the  parabolic  frequency  modulation  and  not  the  instantaneous  frequencies  at different  times  (left  

image  below).  The  graph  of an approximation  for  the  windowed  Fourier  transform  of f with  the  “Hann  window”  

w(t)=0.5-0.5  cos( 2 π t/T)  for  0 ⩽t⩽  T=1  s, on  the  other  hand,  clearly  shows  the  rise  and  fall  of the  instantaneous  

frequencies  and  corresponds  to our  usual  impression  of the  variable  frequency  of the  siren  tone  (right  image).  The  

calculations  used  a 512-point  DFT  over  a total  of T =10  s, with  the  DFT  coefficients  CkT plotted  as approximations  

for  ℱ f(2πk/T)  in the  left  image.  In the  second  case,  50 Hann  windows  of duration  1 s were  used  at intervals  of 0.2  s 

each.  Per  time  segment,  a 128-point  DFT  was  performed  and  the  resulting  (single-sided)  DFT  magnitude  spectra  

were  combined  to form  the  second  image.  Neither  representation  shows  the  constant  amplitude  A=1.  One  reason  

is the  strong  aliasing  effects  due  to the  frequency  modulation.  The  sum  of the  |Ck
2

 of  the  left  image  agrees  

numerically  very  well  with  the  quadratic  mean  of f in [0,  T]  (in  both  cases,  the  value  is about  0.5).  Numerical  

integration  to calculate  the  windowed  Fourier  transform  for  20 Hz  at t0 = 5 s results  in approximately  0.24,  as 

shown  in the  following  spectrogram  on  the  right.  The  signal  values  (and  thus  A) can  only  be approximately  

recovered  from  the  DFT  using  an interpolation  polynomial  or the  formula  for  discrete  reconstruction  from  the  data

(for  more  details  please  see  [1],  12.5).  Now  to the  images:
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In[  ]:= B = 1;

M = 128;

NN = 50;

h[x_] = UnitStep [x];

w[x_] = (0.5 - 0.5 Cos[2 Pi B x]) * (h[x] - h[x - 1 / B]);

f[x_] = Sin[2 Pi 20 × (2 / 10 x^2 - 1 / 75 x^3)]

data0 = Table [f[10 n / 512], {n, 0, 511}];

dft = Chop [Fourier [data0, FourierParameters → {-1, -1}]];

pdft = ListLinePlot [Abs[dft], PlotRange → All,

PlotLegends → Placed [{"DFT Magnitude ,T=10,N=512,

rectangle window"}, Above ]]

data1 [k_, j_] = N[w[j / (B M)] × f[k * 0.2 + j / (B M)]];

FT1[k_, n_] := N[1 / M Sum[data1 [k, j] Exp[-2 Pi I n j / M], {j, 0, M - 1}]];

z[k_, n_] := N[Abs[FT1[k, n]]];

data2 = Table [z[k , n], {n, 1, 25}, {k, 0, NN - 1}];

pwindowed =

ListPlot3D [data2, PlotRange → All, Mesh → 100, Axes → {True, True, True},

Boxed → False, AxesLabel → {"Window No.,Time in s =

Window No. x 0.2s" , "Hz", "Magnitude "},

AxesStyle → Directive [Black, Plain, 10],

PlotStyle → Directive [PlotPoints → 100], ViewPoint → {30, -40, 50},

AxesEdge → {{-1, -1}, {1, -1}, {-1, -1}}, Ticks → {{10, 40}, {10, 20, 25}, {0.0, 0.2}},

PlotLegends → Placed [{"3D Spectrogram , Windowed Fourier Transform ,

50 Hann Windows in T=10s"}, Above ]];
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Now  the  3D  illustration  of the  windowed  Fourier  transform  showing  the  time-frequency  pattern  of the  signal.  The  

illustration  is also  called  a spectrogram.
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In[  ]:= Show [pwindowed ]

Out[  ]=

3D Spectrogram , Windowed Fourier Transform ,

50 Hann Windows in T=10s

In Mathematica  you  can  illustrate  spectrograms  in a 2D  image  with  the  command  Spectrogram  for  a list  of 

sampled  data . For  tests  this  is left  to the  reader.  Instead  we  make  a 2D  representation  ourselves  with  MatrixPlot  for  

our  list  data2:

In[  ]:= mplot = MatrixPlot [data2, PlotLegends → True,

Axes → True, FrameLabel → {"Hz", "Window No."},

DataReversed → {True, False }, ColorFunction → "CMYKColors "];

2 D Spectrogram  of the  siren  signal,  time  t = window  number  x 0.2s.  

It could  be sharpened  with  more  sampling  points.

In[  ]:= Show [mplot ]

Out[  ]=

1 10 20 30 40 50

1

5

10

15

20

25

1 10 20 30 40 50

1

5

10

15

20

25

Window No.

H
z

0.01

0.04

0.09

0.13

0.18

0.22

0.26

Chapter 3  Discrete Fourier Transforms 63


