
Chapter 12
Further Applications of the Fourier
Transform

Abstract Further applications of Fourier analysis are examined. Shannon’s sam-

pling theorem is proven and discussed. The spectral properties of sampling appli-

cations are considered and a basic digital transmission system is shown. The

transmission of signals with a linear multi-carrier system, such as WLAN or

mobile data transmission, is treated as a current everyday application. The method

is orthogonal frequency division multiplexing (OFDM), which uses the FFT and

linear filters. Further sections examine the Heisenberg uncertainty principle and

its consequences for the time-bandwidth product of signals. Closely related to this

is the windowed Fourier transform (STFT) as a tool for time-frequency analysis.

Inversion formulas for the STFT with continuous and discrete parameters are

proven. The use of time windows in the DFT to reduce alias effects is discussed.

In further sections, initial value problems for the homogeneous and inhomogeneous

wave and heat equations in two and three dimensions are solved. The Fourier

transform of distributions is used to solve these equations. The Huygens’ principle

for waves is explained. For the heat equation, an inhomogeneous boundary value

3D problem is solved approximately as a further application of the FEM method

and the solution is displayed graphically.

12.1 Shannon’s Sampling Theorem

The theoretical starting point for signal transmission methods, where discrete

approximations of f (t).are transmitted instead of a continuous analog signal f (t)., is

Shannon’s sampling theorem (1949). It states that a signal f (t). can be reconstructed

from its samples under suitable conditions. A recommended read on the history of

the theorem and its developments, with a wealth of relevant references, is the article

“Sampling—50 Years After Shannon” by Unser (2000).
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384 12 Further Applications of the Fourier Transform

Shannon’s Sampling Theorem for Bandlimited Functions

Theorem 12.1 (Sampling Theorem) If f is an integrable function that is bandlim-

ited by ωc > 0. , i.e., �f (ω) = 0. for |ω| > ωc ., and if tf (t). is also integrable with

f (t)., then for all t ∈ R. with ta = π/ωc ., the following sampling formula holds:

.f (t) =
+∞�

k=−∞
f

�
kπ

ωc

�
sin(ωct − kπ)

ωct − kπ
=

+∞�

k=−∞
f (kta)

sin(ωc(t − kta))

ωc(t − kta)
,

the series being absolutely and uniformly convergent.

Proof From the assumptions, it follows that the spectral function �f . is continuously

differentiable (cf. p. 282). Hence, it is represented pointwise by its Fourier series in

[−ωc,ωc]., and this series is absolutely and uniformly convergent (cf. p. 28):

. �f (ω) =
+∞�

k=−∞
ck e−jkωta (ta = π/ωc, |ω| � ωc)

ck = 1

2ωc

+ωc
ˆ

−ωc

�f (ω) ejkωta dω = π

ωc

f (kta).

Term-by-term integration of the series is possible because the series converges

uniformly. Since bandlimited functions are infinitely differentiable (cf. p. 282), the

sampling theorem follows from the Fourier inversion formula:

.f (t) = 1

2π

+ωc
ˆ

−ωc

�f (ω) ejωt dω = 1

2π

+ωc
ˆ

−ωc

+∞�

k=−∞
ck e−jkωta ejωt dω

=
+∞�

k=−∞

1

2ωc

f (kta)

+ωc
ˆ

−ωc

ejω(t−kta) dω =
+∞�

k=−∞
f

�
kπ

ωc

�
sin(ωct − kπ)

ωct − kπ
.

��
Remark As a reference for variants and generalizations of the theorem, see Jerri

(1977) or Butzer et al. (1988). For example, with theorems of Paley and Wiener

(1934) it can be shown that the sampling series converges absolutely and uniformly

for bandlimited square-integrable functions.

The sampling theorem provides a formula that allows for the interpolation of

the values of f at times t �= kπ/ωc ., given all discrete values f (kπ/ωc)., k ∈ Z..

The sampling frequency must be at least twice the cutoff frequency ωc/(2π)..

By increasing the sampling frequency ωc/π , the formula applies to signals of
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correspondingly higher frequency bandwidth. With a lower sampling frequency than

ωc/π . and given bandwidth ωc . of f , aliasing effects occur with the sampling series

(see p. 387).

For direct practical implementation in signal transmission, the formula is not

suitable because it is not causal. To reconstruct f (t0). at time t0 ., one would also

need all values f (kπ/ωc)., kπ/ωc > t0 .. However, a function f whose spectrum
�f . vanishes outside an interval [−ωc,ωc]. is not time-limited (cf. p. 303), meaning

the sampling formula requires nonzero values of f from the entire future t > t0 ..

Nevertheless, the sampling theorem is a starting point for practical approximation

methods for reconstructing f from sample values. In these methods, a realizable

filter for interpolation is used, replacing the impulse response of the ideal lowpass

filter used below.

To illustrate, consider finitely many samples f (kπ/ωc),−M ≤ k ≤ N .. From

the impulse sequence
π

ωc

+N�

k=−M

f

�
k

π

ωc

�
δ

�
t − k

π

ωc

�
. as the input signal for an

ideal lowpass filter with the frequency response �h(ω) = A0 e−jωt0 . for |ω| ≤ ωc .,
�h(ω) = 0. for |ω| > ωc ., then at the output of the lowpass filter, we get (see Fig. 12.1)

.
π

ωc

+N�

k=−M

f

�
k

π

ωc

�
δ

�
t − kπ

ωc

�
∗ A0 sin (ωc(t − t0))

π(t − t0)

= A0

+N�

k=−M

f

�
k

π

ωc

�
sin (ωc(t − t0) − kπ)

ωc(t − t0) − kπ
.

Except for a factor and the time delay of t0 ., the right side is an approximation of f

that converges to A0f (t − t0). as N,M → ∞..

Remarks

(1) The functions ek(t) =
�

ωc

π

sin(ωct − kπ)

ωct − kπ
. (k ∈ Z.) form a complete

orthonormal system in the space of L2
. functions bandlimited by ωc .. The

sampling formula is thus precisely the development of f with respect to

these basis functions. The proof of the sampling theorem shows that �ek(ω) =

Fig. 12.1 Schematic digital-to-analog conversion
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√
π/ωc e−jωkπ/ωc . holds for |ω| ≤ ωc ., �ek(ω) = 0. otherwise. Completeness and

orthogonality of the functions ek(t). therefore follow from Plancherel’s equation

(p. 308) and the fact that the functions �ek(ω). form a complete orthogonal system

in L2([−ωc,ωc])..
(2) The sampling series converges very slowly because the interpolation function

sin(t)/t . decays slowly for |t | → ∞.. With oversampling, i.e., replacing

the sampling points kπ/ωc . by kπ/(αωc). with α > 1., one can obtain an

interpolation function that decays like 1/t2
. for |t | → ∞.. To see this precisely,

solve the corresponding exercise A1 in the exercise part 12.9.

(3) With additional assumptions about f , such as information about the energy

distribution of f or its decay behavior, error estimates for the truncation error

of the above approximation can be shown. Similarly, there are error estimates

for the case when the sampling points are not exactly maintained and instead of

f (kπ/ωc). the values f (kπ/ωc + εk). are sampled (the so-called jitter errors).

In addition, in practical transmission systems, the sampled values are not

transmitted continuously, but the value range is discretized and only a finite

number of rounded values are transmitted. The resulting signal distortion, called

quantization noise, corresponds in the time domain to the addition of an impulse

train with the consequence of a broadband noise spectrum. There are also

studies on the rounding errors resulting from this. For readers interested in error

analysis, it is recommended to start with works such as Jerri (1977).

(4) Sampling methods with irregularly distributed sampling points (irregular sam-

pling) play a role, for example, in radar technology. For this, see the works

of H.-G. Feichtinger and K. Gröchenig (detailed references can be found in

Unser (2000)).

Generalizations

There are numerous generalizations of the presented sampling theorem. These

include, in particular, sampling theorems for time-limited, generally non-

bandlimited functions with statements about the approximation quality of the

considered sampling series. In general, representations of the form

.f (t) =
�

k∈Z
f

�
k

π

Ω

�
ϕ(Ωt − kπ) or f (t) = lim

Ω→∞
�

k∈Z
f

�
k

π

Ω

�
ϕ(Ωt − kπ)

are sought for functions f of certain function classes and bandwidths Ω ., and the

approximation properties of the sampling series are derived from the assumptions

about the function f and the properties of the kernels ϕ .. Such properties can be time

or band limitation, decay behavior, etc. This topic will not be further addressed here,

but rather reference is made to further literature such as Butzer and Stens (1992) or

Unser (2000) and the references cited therein. Further aspects can also be found in

the following Sect. 12.5 on time-frequency analysis (see p. 415) and Sect. 14.2 on

wavelets (see p. 468).
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12.2 Sampling as the Basis of Digital Transmission
Technology

Sampling, Critical Sampling, Over-, and Undersampling

Equidistant sampling of a bandlimited—and therefore infinitely differentiable—

slowly increasing function f ∈ OM ., with a sampling frequency 1/ta ., can be

described as the multiplication of f with a sequence of impulses at the times kta ..

With the note on p. 163 and impulse strengths taf (kta). the resulting discrete signal

fd . and f as well as �fd . and �f . each have the same physical units (see also p. 388

for the reconstruction of f from sampled values or literature on the functionality of

D/A converters for voltage signals in volts). For fd .—understood as a distribution

with time parameter t—the following applies

.fd(t) = f (t) ·
+∞�

k=−∞
taδ(t − kta) = ta

+∞�

k=−∞
f (kta)δ(t − kta).

Therefore, from the theorems on the convergence of convolutions (p. 197) and on

Fourier transforms of impulse trains (p. 298) and of products (p. 300), the following

fundamental relationship between the spectrum �f . of f and the periodic spectrum

of the discrete signal fd . follows (cf. 347):

Theorem 12.2 The spectrum of the discrete signal fd ., which is generated by

sampling a bandlimited function f ∈ OM . with sampling frequency 1/ta ., is given by

.�fd(ω) = �f ∗
+∞�

k=−∞
δ(ω − 2πk/ta) =

+∞�

k=−∞
�f (ω − 2πk/ta).

For k �= 0., the spectra �f (ω − 2πk/ta). are replicas of �f .. In the case of critical

sampling with the sampling rate 1/ta = ωc/π ., referred to as the Nyquist frequency,

these replicated spectra immediately adjoin each other. A reconstruction of f from

the sample values using a realizable lowpass filter is generally not possible, as

this requires a transition region from the passband to the stopband (cf. p. 335).

This transition region only arises at sampling rates 1/ta > ωc/π ., i.e., through

oversampling (Fig. 12.2). In the case of undersampling with rates 1/ta < ωc/π .,

overlaps of the replicated spectra occur in the spectrum of fd .. A reconstruction of

f from the corresponding sample values is then not possible, as aliasing effects

occur in the signal spectrum, especially at higher frequencies (Fig. 12.3). The

following schematic diagram shows the first graphic as a magnitude spectrum of

fd . with oversampling ta < π/ωc ., the second as a magnitude spectrum of fd . with

undersampling ta > π/ωc ..
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Fig. 12.2 Sampling without

aliasing

Fig. 12.3 Sampling with

aliasing

The Scheme of Digital Transmission in Practice

In practical implementations, the sampling theorem suggests the recipe that lowpass

filtering of the impulse sequence obtained from the sample values yields an

approximation of the continuous signal. An impression is given by the following

diagram. Sampling is technically done through sample and holds circuits (S&H .).

The values of the resulting step function are proportional to the quantized sample

values of the signal. The impulse sequence for reconstruction from the quantized

sample values is approximated by a sequence of rectangular pulses. An impulse

δ(t − kta). at sampling frequency FS = 1/ta . (DAC sampling frequency clock

FS) is replaced by the rectangle R(t − kta)/ta ., R being the indicator function of

[0 , ta [. (“rectangle area” equal to one), i.e., an impulse taδ(t − kta). of strength ta .

is replaced by the convolution taδ(t − kta) ∗ R(t)/ta = R(t − kta).. This creates

a step function with the quantized sample values, i.e., in addition to quantization

errors, there are distortions compared to the spectrum of the discrete signal model

fd ., as the spectrum ta e−jωkta . of an impulse taδ(t − kta). is multiplied by the

spectrum e−jωta/2 sin(ωta/2)/(ωta/2). of the rectangle R(t)/ta . (cf. p. 275). These

distortions can be compensated by a correction filter (inverse sin(x)/x . filter) with

digital filtering before the D/A conversion or afterward with an analog filter (see

Fig. 12.4).

Specifically, for example, in digital telephony with ISDN, and similarly in newer

methods like Voice over IP, a frequency range up to 3700 .Hz is transmitted and

filtered with a stopband starting at 4000 Hz. In standard telephone quality, speech

signals are sampled at 8 kHz according to the sampling theorem, i.e., at time

intervals of 125 μs.. Only quantized, rounded values are transmitted, which can

be encoded as 8-bit-long digital code words. In Voice over IP, optionally lossy

compressions are also used, similar to the MP3 encoding mentioned later, i.e.,

code words with less than 8 bits per sample value are used to ultimately reduce

the required bandwidth during transmission.
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Fig. 12.4 Illustratively a digital transmission system

Fig. 12.5 PCM30 bit frame

with 8-bit code word per

sample of the conversation on

channel 4

In the European PCM30 system (PCM stands for Pulse Code Modulation) for

landline connections, 32 channels per transmission device are transmitted in a bit

frame of 32 × 8 bit = 256 bit. per pulse frame, i.e., every 125 μs.. One of the 32

channels contains a frame synchronization word, another channel contains signaling

information (e.g., dialed phone numbers), and the remaining 30 channels contain the

voice signals of 30 different conversations, which can be transmitted over shared

line routes through cyclic aggregation (multiplexing; see the following graphic for

a PCM30 bit frame).

The simultaneous transmission of multiple signals over a shared line between

switching centers is possible through time utilization between the sampling points

of a signal. During this time, other signals are sampled and transmitted. In this

technique, the bit rate per telephone channel is 8 × 8 000 bit = 64 kbit/s., resulting

in a bit rate for the transmission device for 32 channels of 32 × 64 kbit/s =
2.048 Mbit/s. (see Fig. 12.5). The economic benefit in digital telephony is an

increase in switching capacity and the high utilization of expensive lines between the

switching centers. This technology is still in use but is increasingly being replaced

by the aforementioned Internet telephony, which saves costs for operators through

higher bandwidth usage and cheaper equipment in the switching centers.

A well-known additional application example of the sampling theorem is audio

files in the so-called WAV format. Here, sampling is done with 44100 values per

second, i.e., a bandwidth of about 20 kHz is achieved. In the MP3 format, the

frequency range is divided into several subbands. The FFT values of time sections of

the acoustic signal are then quantized and transmitted with a varying number of bits
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based on psychoacoustic criteria depending on the location in the frequency range.

At the receiver, an approximation of the signal is reconstructed from these spectral

values. Details on this can be quickly found in an MP3 specification if interested.

Modulation with Nyquist Pulses

The starting point of discrete signal processing in today’s digital transmission

methods are discrete values xk ., k ∈ Z., in which the useful information is

transported. In the mathematical model, an impulse sequence xd = ta
�

k∈Z
xkδk =

ta
�

k∈Z
xkδ(t − kta). is present, from which a continuous signal s = xd ∗ h. is

generated through a linear filter with regular impulse response h. We assume that the

convolution xd ∗ h. is possible and all sampling values h(nta). exist (e.g., supp(xd).

bounded, h ∈ S �
. continuous).

.s(t) = (xd ∗ h)(t) =
�

k∈Z
xktah(t − kta).

With h, the transmission and reception filters and a linear filter describing the

transmission channel are combined, i.e., s(t). is the received signal. It is immediately

apparent that the sampling values s(nta) = xn . yield exactly the desired useful

information if tah(0) = 1. and h(nta) = 0. for n �= 0.. Filters h, also called pulse

shapes with this property (zero crossing property), are called Nyquist Pulses.

Example If the values xk . are sampled values xk = f (kta). of a function f

bandlimited by ωc . as in the previous Shannon sampling theorem and the function

h(t) = sin(ωct)

π t
. with ωc = π/ta ., then according to the proof of the sampling

theorem s(t) = f (t).. The function h is a Nyquist pulse, as are products of h with

functions g that have the value g(0) = 1. at zero. The so-called “raised cosine filter”

hRC,α ., which in practice is often used and falls off much faster than h for |t | → ∞.,

is an example of this (see also later on p. 398, where it is given as a pulse shape in

the frequency domain):

.hRC,α(t) = sin(π t/ta)

π t
· cos(παt/ta)

1 − (2αt/ta)2
.

The parameter α . controls the bandwidth extension (excess bandwidth) compared to

the spectrum of the sinc pulse h. The spectrum �hRC,α . with falling cosine flanks,

from which this pulse shape gets its name, is given in Exercise A10 to Chap. 10,

p. 319 (there π/ta = b, a = αb.). Applications of various Nyquist pulses can be

found in Proakis and Salehi (2013).
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Nyquist pulses h allow the reconstruction of the values xk . by sampling s(t). even

if h and therefore s are not bandlimited, thus despite aliasing effects in the spectrum

of the pulse train sd(t) =
+∞�

k=−∞
tas(kta)δ(t − kta).. In applications, h is often a

function with bounded support (see later p. 394). If the xk . are referred to as symbols

to be transmitted, then transmissions with Nyquist pulses are free from intersymbol

interference (abbreviated ISI in literature).

Modulations with Pulse Shapes That Are Not Nyquist Pulses
If we consider the task of reconstructing the values xk . from the sampled values

sk = s(kta)., k ∈ Z., of the received signal s(t). as a discrete linear filter problem,

then with the results on inverse discrete filters, we obtain (see 11.6, p. 368 and 8.7,

p. 195):

Theorem 12.3 If a pulse shape h corresponds to a discrete filter with impulse

response hd = ta
�

k∈Z
h(kta)δk . that has an inverse with impulse response hd,inv =

�

k∈Z
gkδk ., so that (xd ∗ hd) ∗ hd,inv = xd ∗ (hd ∗ hd,inv). is associative,1 then

xd = ta
�

k∈Z
xkδk . is reconstructed by the discrete convolution xd = sd ∗ hd,inv .,

i.e.,

.xn =
�

k∈Z
skgn−k for n ∈ Z.

Theorems on discrete filters in different signal spaces, on stability, causality,

invertibility, and possible design methods for FIR or IIR filters were already

presented in Sect. 11.6. Starting from the modulation of discrete information with

various pulse shapes as impulse responses of linear filters, a variety of signal pro-

cessing algorithms have been developed. Some aspects of this follow in Sect. 12.5

on time-frequency analysis and Sect. 14.2 on wavelets. For an in-depth study of

various methods of application-specific signal processing, reference is made here

only to the extensive literature on the subject, for example, Papoulis (1977) on

signal analysis, Proakis and Salehi (2013), Couch (2012) on digital communication

systems, Salditt et al. (2017) on imaging methods in biomedicine, or the works

mentioned and referenced at the end of Sect. 12.1.

A study of digital signal processing, which today permeates almost every area

of life and all fields of science, requires specialized training in dealing with the

mathematical methods and ultimately with the technology through which designed

algorithms can be implemented.

1 The z-transforms of xd ., hd ., hd,inv . must have a common region of convergence.
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12.3 The Basic Idea of Multi-Carrier Transmission with
OFDM

This section describes the basic idea of the OFDM multi-carrier method as a far-

reaching technology. OFDM (English) stands for Orthogonal Frequency Division

Multiplexing. Nearly everyone uses this method almost around the clock today,

because OFDM is comprehensively used for the transmission of WLAN, DSL,

digital radio (DAB), and TV (DVB), in powerline communication and mobile

communication with LTE, LTE+, and 5G standards. An OFDM application in

optical transmission systems with bandwidths up to 1 Tb/s is in development (see,

for example, Ma et al. 2010). The history of Frequency Division Multiplexing

(FDM), back then with analog technology, goes back to the first patents on multitone

telegraphy in the years 1875–1876 by Alexander Graham Bell, Elisha Gray, and

Thomas Edison. A readable account of the development of OFDM methods can be

found in Weinstein (2009).

Today’s digital OFDM methods, referred to as DMT (Discrete Multitone Trans-

mission) in ADSL and VDSL, go back to works by Chang (1966) and Weinstein

and Ebert (1971). They are a combination of applications of the DFT, the sampling

theorem with filter technology, together with the use of coding and encryption

algorithms. Additionally, methods for estimating the properties of transmission

channels are included, based on which transmission errors are to be corrected at

the receiver to recover the user information. Physically, the OFDM methods are

implemented with highly developed hardware in electrical and communications

engineering.

Characteristic of OFDM transmission is that large parts of the required transmis-

sion and reception technology consist of discrete signal processing, which can be

cost-effectively realized with uniquely developed algorithms on integrated circuits

(ICs) compared to analog technology. Only because of this, today one can get a

WLAN USB stick or digital media devices including necessary software as mass

products for relatively low costs.

In the literature on communications engineering, there are a number of easily

searchable textbooks dedicated in detail to the OFDM methods. Therefore, only the

essential ideas will be presented here in all necessary brevity, as far as they can

be easily understood with the methods of Fourier analysis treated in the present

text. They may serve as an incentive for readers to deepen their knowledge with

specialized literature if interested.

Mathematical Components of an OFDM Transmission System

1. From the Coded Bit Stream with QAM to Trigonometric Polynomials
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Fig. 12.6 16-QAM Gray Coded Symbol Mapping without factor A

On the sender side, there is a bit stream, i.e., a 01 sequence of data that is to

be transmitted. The data is usually encoded and encrypted (keywords: error-

correcting codes, interleaving, possibly WPA2 encryption, etc.).

To explain OFDM at hand of an example, let us assume that transmission is to

be done with 16-QAM modulation. 16-QAM stands for Quadrature Amplitude

Modulation with an alphabet of 16 complex numbers. From the bit stream, blocks

of 4 bits each are injectively mapped to a set of 16 complex numbers, also

referred to as QAM symbols (see Fig. 12.6).

A 16-QAM modulation with its assignments is shown below. All complex values

are multiplied by the scaling factor A = 1/
√

10.. This normalizes the power

of a 16-QAM modulated uniformly distributed 01 random bit sequence in the

transmit signal to one (cf. Couch 2012).

To generate an OFDM symbol Si . with N carriers for a time period from iT to

(i + 1)T ., the sequential bit stream is parallelized into n ≤ N . 4-bit blocks, which

are mapped with 16-QAM to n complex numbers ci,k . as shown above.

With the N carriers ej2πkt/T
. and the complex amplitudes ci,k ., a trigonometric

polynomial with a bandwidth B ≤ (N − 1)/T .Hz is formed, which is limited

in duration to the interval [iT , (i + 1)T ]. by multiplication with a time window

T gi,T (t) = T gT (t − iT )., resulting in the OFDM symbol Si . in the baseband:

.Si(t) = T

N−1�

k=0

ci,k ej2πkt/T gi,T (t).

N − n. carriers, whose frequencies are agreed upon between the transmitter

and receiver, remain unoccupied with ci,k = 0., or they can be used with

predetermined amplitudes as pilot carriers or—prefixed to the symbol—as

preambles at the receiver for channel estimation and synchronization (cf. also

Example 4, p. 94). The useful information of 4n bits is thus contained in the

assigned complex amplitudes ci,k . of Si .. The function gT . is the impulse response

of the transmit filter.
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We initially assume a rectangular window for gi,T . to illustrate the basic idea of

OFDM and consider only a single time step with i = 0.. To simplify notation,

the index i is therefore omitted, and T gi,T = wT = 1[0,T [ . is set (wT . thus

being the indicator function of the interval [0, T [.). The trigonometric polynomial

component in the OFDM symbol S occupies the frequency band [0, (N −1)/T ]..
However, the product with a time window wT . is no longer bandlimited, i.e.,

the spectrum of S results in out-of-band interference. In implementations, one

would therefore choose other windows wT . whose amplitude spectrum falls off

faster than that of a rectangular window.

The functions ej2πkt/T wT (t)., k = 0, . . . , N − 1., form an orthogonal system

in the space L2([0, T ])., the frequency band [0, (N − 1)/T ]. is divided by the

carrier frequencies with fixed frequency spacing 1/T ., and all QAM values are

transmitted together during the symbol duration T . Because of these properties,

the method is called Orthogonal Frequency Division Multiplexing, abbreviated

OFDM. Due to the orthogonality of the carriers, transmission interference at

one of the carrier frequencies has no effect on the other carriers, i.e., there

is no inter-carrier interference (ICI)—at least as long as the transmission

channel does not cause frequency dispersion due to Doppler effects in moving

receivers as in mobile communications, and it is neglected that a signal, which

is not bandlimited due to the rectangular window wT ., is transmitted over a

bandlimited channel. Distortions of a linear time-invariant channel, for example,

due to multipath propagation and superpositions of multiple delayed signal

sections arriving at the receiver, can be corrected there—with moderate noise—

by estimating the channel impulse response.

The following Fig. 12.7 shows the magnitude spectra of ck ej2πkt/T wT (t). for

k = 1. and k = 4.. It can be seen that the spectra are Nyquist pulses in the

frequency domain (cf. p. 391), i.e., |ck�wT (ω − 2πk/T )| = 0. at each maximum

point ω . of the magnitude spectra |cn�wT (ω − 2πn/T )|. for n �= k . (0 ≤ k, n ≤
N − 1.). Figure 12.8 shows in advance the shape of a typical WLAN spectrum,

with 48 data carriers and here for visibility exaggeratedly large 4 pilot carriers. A

transmission with a rectangle time window had the blue spectrum. Transmission

with a common raised cosine window, explained a little later, has much less out-

of-band emission, as is seen in the red spectrum.

Fig. 12.7 Magnitude of two

carriers
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Fig. 12.8 Illustratively a

WLAN spectrum

2. Real-Valued Transmission Signal, Quadrature Modulation, and Demodulation

A real transmission signal is obtained from S through quadrature modulation

(QM) with an intermediate frequency ωc .. The generated real-valued signal SR . is

.SR(t) = �
	

ejωct
N−1�

k=0

ck ej2πkt/T



wT (t).

We obtain the following representation, where I (t). is called the in phase and

Q(t). the quadrature component of S(t).:

.SR(t) = cos(ωct)

N−1�

k=0

(�(ck) cos(2πkt/T ) − �(ck) sin(2πkt/T ))wT (t)

− sin(ωct)

N−1�

k=0

(�(ck) sin(2πkt/T ) + �(ck) cos(2πkt/T ))wT (t)

= (I (t) cos(ωct) − Q(t) sin(ωct))wT (t).

Pairwise orthogonality of the carriers and signal bandwidth are preserved in QM.

The signal spectrum is shifted to the intermediate frequency fc = ωc/(2π). (for

WLAN, fc . is about 2.4 GHz or 5 GHz). Repeated QM and lowpass filtering

to suppress high-frequency remnants at the receiver return the complex-valued

function S in the baseband, assuming no influences from the transmission

channel distort the signal. Using addition theorems for cosine and sine functions,

we find

.2 cos(ωct)SR(t) = I (t) + high-frequency remnant

2 sin(ωct)SR(t) = Q(t) + high-frequency remnant

S(t) = I (t) + jQ(t).

From samples of S, the receiver can then use a DFT to reconstruct the

amplitudes ck . and, with inversion of the 16-QAM mapping, finally reconstruct

the transmitted bit groups. In the following, it will be explained how to transition
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from this analog model with discrete signal processing to the digital transmission

methods used today, saving much expensive analog technology.

3. Use of Discrete Signal Processing with an IDFT

To generate a transmission signal with discrete signal processing, samples of

S are generated from the amplitudes ck . of the OFDM symbol with M ≥ N .

values. To demonstrate, we choose M = 8.. An IDFT (see Sect. 6.1) of the

amplitudes c0, . . . , cM−1 . suffices for this purpose without extensive hardware.

For “upsampling” to M values, a zero sequence of length M − N . is simply

appended to the amplitudes ck .. The subsequent IDFT has length M and provides

M samples (yn)0≤n≤M−1 .. For radix-2 IFFT/FFT algorithms used in practice,

M is a power of two, such as M = 2048. for LTE with 20 MHz bandwidth,

1201 used carriers per OFDM symbol, 15 kHz carrier spacing, and 30.72 MHz

sampling frequency.

With sufficient samples, potentially after further “upsampling” the IDFT values

with CIC filters (Cascade Integrator Comb Filter), quadrature modulation can

also be performed discretely without analog mixers by multiplying the real and

imaginary parts of the IDFT list with the values of the modulating cosine and

sine functions at the corresponding sample points and subtracting the resulting

lists point by point. For that, one can use DDS components (Direct Digital

Synthesizer) matching the bandwidth and bit resolution of the subsequent D/A

converter. The result is samples of the real transmission signal SR ., which are fed

to a D/A conversion (see p. 385–387).

Example With the data T = 1/2.s, c0 = 0., c1, . . . c4 . as on p. 393, M = 64., ωc =
64π . rad/s, the following graph shows in Fig. 12.9 the QM modulation of the analog

signal S(t). (thin line) and the approximation (thick line), which is generated from

IDFT values and discrete QM modulation as described. The second curve is drawn

with a value offset of +0.4 for visible distinction. Figure 12.10 shows the amplitude

spectrum of the first curve in dB. For both cases, the rectangular time window w =
1[0,T [ . was used, and for interpolation of the samples in the second case, the series

from the Shannon sampling theorem with bandwidth B = 128π . rad/s. The moderate

roll-off of the amplitude spectrum, which does not meet practical requirements for

permissible out-of-band emissions, is apparent.

Fig. 12.9 QM-modulated

signals over time t , analog

signal, and approximation

from samples (thick) with

offset
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Fig. 12.10 Amplitude

spectrum in dB, plotted over

frequency ωc/(2π) = 32.Hz

4. Other Pulse Shapes Reducing Out-of-Band Emissions,Cyclic Prefix, and Postfix

In practice, stronger damping in the out-of-band region is required. Specifications

for WLAN, DAB, etc., define spectral masks that must be adhered to for

transmission.

There are various methods to achieve better damping in the out-of-band region.

One can quickly find a large number of publications on this topic under keywords

like “OFDM Pulse Shaping.” Methods such as smoothed time windows (W-

OFDM for Windowed OFDM), filter banks for pulse shaping (FBMC, “Filter

Bank Based Multicarrier Systems”), and other variants of the multi-carrier

method can be used. Important aspects are the Heisenberg’s uncertainty principle

and the Balian-Low theorem regarding the time-frequency localization of signals

(see the following sections of this chapter).

In the following example, it is shown how the signal spectrum in the out-of-

band region can be attenuated by extending the signal duration T and using a

time window wT (1+α) . of duration T (1 + α). with rounded edges instead of the

previously used rectangular window. At the same time, a “Cyclic Prefix” (CP)

and a “Postfix” are introduced by cyclically extending the signal. While �wT .

is a Nyquist pulse in the frequency domain, this is not the case for �wT (1+α) ..

As a result, the transmit signal experiences some inter-carrier interference

(ICI) because the carriers ej2πkt/T wT (1+α)(t)., k = 0, . . . , N − 1., are no

longer orthogonal to each other. This method is, on the other hand, easy to

implement and is also used in real systems (cf. Montreuil et al. (2013), Broadcom

Recommendations for Tx Symbol Shaping). An important advantage of the

cyclic prefix is that the convolution with the channel impulse response h of a

time-invariant transmission channel can be represented as a cyclic convolution

if this impulse response does not last longer than the prefix. This allows for

interference suppression using the sample values �h(2πk/T ). of the estimated

channel frequency response �h.. More on this below in point 7. The time interval

with the cyclic prefix is called the Guard Interval (GI). It often comprises 1/4. of

the core symbol duration (e.g., LTE2).

2 LTE 4G with 64-QAM, 20 MHz bandwidth: 1201 subcarriers, core symbol T = 66.67 μ.s, GI

(long) 16.67 μ.s.
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Pulse Shaping with “Raised Cosine Window,” Cyclic Prefix, and Postfix

The IDFT values from the previous example are now cyclically extended by a

prefix with the last 16 IDFT samples and a postfix with the first four IDFT

samples. The new list then has L = 84. elements. Instead of the rectangular

time window, a window with cosine edges (“raised cosine window”) is used as

in the previously cited Broadcom recommendations.3 Additionally, a realizable

(analog) Butterworth lowpass filter is used for interpolating the samples of

SR . instead of the Shannon sampling series to model the D/A conversion. For

the weighting of the IDFT list with time window values, the time window

wT (1+α)(t) = Tp(t). is used with α = T/16. and

.p(t)=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1/T for 0 ≤ |t | <
T (1 − α)

2
1

2T

�
1+cos

�
π

αT

�
|t |− T (1−α)

2

���
for

T (1−α)

2
≤ |t |≤ T (1 + α)

2

0 otherwise.

Weighting the cyclically extended IDFT list with values of Tp

�
t − T (1 + α)

2

�
.

at times tn = T (1 + α)(2n + 1)/(2L)., n = 0, . . . L − 1., results in the first

three prefix values and the last three postfix values entering the cosine edges of

the window, thus “rounding” the OFDM pulse shape. Below in Fig. 12.11 is the

interpolated signal with lowpass delay and cyclic extensions at the beginning

and end, and on the right, the resulting amplitude spectrum is shown in bold

compared to the thinly drawn one using the rectangular window. (Try to examine

the example yourself with a computer algebra system.) See also the figure on

p. 395.

From the Fourier transform �p . (cf. Exercise A10, p. 319), it can be seen that the

amplitude spectrum of the OFDM signal in the out-of-band region is now much

more attenuated than with the rectangular window, as can also be clearly seen in

the following Fig. 12.12:

Fig. 12.11 QM-modulated

signal with the raised cosine

window over time t in

seconds, after interpolation

with Butterworth lowpass

filter, group delay in the

passband ∼21.ms; signal

extended by pre- and postfix

3 Broadcom is a supplier, e.g., for DSL in wired connections (DSLAMs) of various providers.
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Fig. 12.12 dB amplitude

spectra over frequency f

(fc = ωc/(2π) = 32.Hz),

bold with raised cosine

window, thin with rectangular

window. For f <fc . window

effect, beyond the stopband

edge 96 Hz, additional

lowpass effect

.�p(ω) = sin(ωT/2)

ωT/2

�
cos(αωT/2)

1 − (αωT/π)2

�
.

The Butterworth filter for interpolation was designed with the following data:

passband edge 48 Hz, stopband edge 96 Hz, minimum passband gain 0.9,

maximum stopband gain 0.005, and DC gain K = 1. (Fig. 12.11). The order

of the filter is 9, and the group delay approximately 21 ms in the passband (cf.

p. 335). The attenuation gain in the range up to the intermediate frequency is due

to the Raised Cosine Window, and the even stronger falloff of the spectrum in the

right part of the last image is due to the additional attenuation in the stopband of

the lowpass filter.

5. Reconstruction of the Information with a DFT for Identical Reception of SR .

With identical reception without distortions caused by the transmission channel,

the receiver retrieves the in-phase component I (t). and the quadrature component

Q(t). of the signal by extracting a time interval of duration T and inverting

the quadrature modulation. After an N -point DFT of I (t) + jQ(t). over this

time interval, it can be determined which complex amplitudes ck . of the OFDM

alphabet correspond to the DFT result. One primary advantage of periodicity

with prefix and postfix is that moderate synchronization errors (phase offset) can

be easily corrected if pilot values among the amplitudes are known.

Example Sampling in the previously calculated example4 with sampling times

tn = nT/N + Δt ., N = 5., n = 0, . . . , N − 1., and Δt = 0.226.s, i.e.,

asynchronously starting in the prefix, initially yields the DFT list dft

.dft = ( − 0.00136 + 0.00096j,−2.10649 + 2.35922j,−2.37870 + 2.08454j,

+ 3.02492 − 2.97252j,−0.37881 + 1.36073j).

Using c1 . as a pilot value results in the corrected phase (cf. Example 4, p. 94)

giving the result (�c0, . . . ,�c4)., which can now be compared with the values

(c0, . . . , c4). on p. 393. The deviations between the two lists are due to rounding

4 Recommendation: Compute the example yourself using a computer algebra system.
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during the discrete Fourier transforms and slight inter-carrier interferences

caused by the window wT (1+α) .:

.

1

A
(�c0, . . . ,�c4) = (−0.0013644 + 0.00095966j, 1.00016 + 3.00049j,

3.0015 + 0.997246j, −2.99428 + 3.00339j, −1.00272 − 0.994806j)
1

A
(c0, . . . , c4) = ( 0, 1 + 3j, 3 + 1j, −3 + 3j, −1 − 1j ).

6. Energy Density and Spectral Power Density of an OFDM Transmission

An OFDM transmission, like the segment under consideration, is time-limited

and thus an energy signal. Therefore, there is no power density in the usual sense

other than zero. The squared magnitude of �SR(ω). in the example represents

an energy density according to its physical dimension. The spectrum of the

approximation for SR . is, as seen in the example, essentially determined by

the variance of the OFDM alphabet and the Fourier transforms of the window

function and the interpolating lowpass filter. In theoretical approaches, an OFDM

transmission can be modeled as an infinitely lasting cyclostationary stochastic

process, and an average spectral power density can be specified. Calculations

under various assumptions about the modulation method can be found in Couch

(2012) or Gardner et al. (2008). The specifications of the transmission methods

(WLAN, DVB-T, etc.) provide spectral masks for spectral power densities that

must be adhered to—for signals in volts, then with the unit V2
./Hz. In practice,

this evidence is provided through simulations for spectral estimation. For this

purpose, several thousand OFDM symbols are generated with a random bit

sequence, and the interpolation of the (discrete) DFT spectra is averaged for

spectral estimation. Various averaging methods are in use (averaged periodogram

technique, Bartlett’s method, Welch’s method, etc.). A comprehensive treatment

of the topic spectral estimation with statements on consistency, unbiasedness,

and variance of various estimates can be found, for example, in the textbook on

digital signal processing by Kammeyer and Kroschel (2012).

7. Effects of the Transmission Channel, Preambles, Pilots, and Cyclic Prefix

The transmission channel for OFDM, whether wired or wireless, has vari-

ous effects on the functionality and quality of the transmission. These are

summarized under the term “fading.” These include echo effects and time

delays in multipath propagation, leading to possible cancelations or intersym-

bol interference (ISI), attenuation for various reasons (transmitter distance,

weather), frequency dispersion due to Doppler effects with moving transmitters

or receivers. Additionally, noise, nonlinear distortions of the RF amplifiers,

especially in mass products designed with cost and energy optimizations, jitter

effects in oscillators in components, and much more, which communications

engineers must master for a robust functioning overall system during design

and implementation. An initial impression of the topic of channel equalization

is given by the following considerations:
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Assume that the receiver has the sampled values r(nT /N). (0 ≤ n ≤ N − 1.)

of the received signal segment. The channel is assumed to be a noiseless causal

linear filter. Its impulse response h should decay within the duration of a cyclic

prefix preceding the OFDM symbol. Through the extension of the symbol with

prefix and postfix as in the example and the decay of transient components of the

convolution of the signal S with h within the prefix duration, the values r(nT /N).

can be regarded as sampled values of the convolution of h with the T -periodic

Fourier series ST ., which arises through the periodicity of the OFDM symbol.

Since supp(h). is bounded, �h. is a multiplier in S �
.. With sampled values of the

channel frequency response �h., the periodized received signal rT . satisfies (cf. p.

300 and p. 344)

.rT (t) = ST ∗ h =
N−1�

k=0

ck
�h(2πk/T ) ej2πkt/T .

It follows that r(nT /N) = rT (nT /N) =
N−1�

k=0

ck
�h(2πk/T ) ej2πkn/N

., i.e.,

r(nT /N). is the nth component of an IDFT of
�
ck

�h(2πk/T )
�
k=0,...,N−1

..

A DFT of the values r(nT /N). with result �rk . (0 ≤ k ≤ N − 1.) in the kth

component then shows for a desired complex amplitude ck . of the OFDM symbol:

.ck = �rk
�h(2πk/T )

.

Preambles and pilot symbols known to the receiver can be used for synchroniza-

tion and for estimating the impulse response h or the channel frequency response
�h.. However, this seemingly simple channel equalization must be approached with

caution. The necessary duration of the prefix and the channel frequency response
�h. must be reliably estimated; the values �h(2πk/T ). must not become zero (cf.

Sects. 5.6 and 11.6 on convolution inverses), and the convolution equation r =S∗h.

is a typical ill-posed problem (cf. Excercise A12 in Chap. 9). Very small values

of �h(2πk/T ). in the quotient for ck . cause a strong increase in noise components

in the received signal that were not considered. Therefore, in real practice, there

are various modified equalization algorithms, with known �h.—for example, in

wired transmissions—partially with preequalization already at the transmitter,

otherwise at the receiver side.

8. Final Remarks and Notes on Advanced Communication Technology

There are many other topics that need to be mastered for practical real-time

transmission (within a few μ.s per OFDM symbol, see footnote11
.) with OFDM

or modifications of the procedure (OFDMA, COFDM, FBMC, GFDM, etc.).

These include, in particular, peak reduction (with many equal amplitudes ck . in

the OFDM symbol, peak-to-average power ratio reduction, PAPR reduction),

channel equalization with multiple frequency-selective channels (Doppler effects
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with moving transmitters or receivers with frequency dispersion), and many oth-

ers. Despite simple principles, it is a long way to robust technology, demanding

high skill from engineers and computer scientists. Since this text can by no means

be a comprehensive introduction to the art of communication technology, but

only aims to describe some fundamental ideas originating in Fourier analysis and

essentially provide suggestions for acquiring further knowledge on the subject if

interested, the already frequently cited specialized literature on communication

technology is recommended once again for everything else mentioned in the text.

12.4 Heisenberg’s Uncertainty Principle

Already in earlier sections, we had qualitatively observed that the spectral width of a

signal is greater the shorter the signal duration is. Conversely, the impulse response

of a lowpass filter lasts perceptibly longer in time the smaller the cutoff frequency of

the filter is. The same aspect shows up in the scaling property f (αt)
1

|α|
�f

�ω

α

�
.

of the Fourier transform for α �= 0. or in the fact that a time-limited signal f has a

Fourier transform �f . that does not completely vanish in any frequency interval (see

p. 303). For illustration, one can look again at the examples in Sects. 10.1 and 11.2,

such as rectangular or triangular functions with their Fourier transforms on p. 275

or the correspondences δ(t) 1. and 1 2πδ(ω)..

To obtain quantitative statements about the observed coupling of compression

and expansion in the time-frequency domain, a measure is needed for the duration

and bandwidth of signals. Although there is no uniform definition of duration and

bandwidth for the immense variety of possible signals, the definition of dispersion is

suitable for introducing these concepts for a large class of signals. For the signals f

considered below, we assume that the functions f are continuous and piecewise

continuously differentiable. Furthermore, tf (t). and
.

f (t). should also be square-

integrable along with f (t).. We interpret the parameter t as a time parameter.

Definition

1. The dispersion Δ2
a(f ). of f �= 0. around the point a is defined by

.Δ2
a(f ) =

+∞́

−∞
(t − a)2|f (t)|2 dt

+∞́

−∞
|f (t)|2 dt

.

2. The effective duration Dt(f ). of f �= 0. is defined by
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.Dt(f ) = Δa(f ) with a =

+∞́

−∞
t |f (t)|2 dt

´ +∞
−∞ |f (t)|2 dt

.

3. The effective bandwidth Dω(f ). of f �= 0. is defined by

.Dω(f ) = Δb( �f ) with b =

+∞́

−∞
ω| �f (ω)|2 dω

+∞́

−∞
| �f (ω)|2dω

.

The dispersion Δ2
a(f ). is a measure of how well or poorly f is “concentrated

around a.” If |f (t)|. is very small outside a small neighborhood of a, then the

factor (t − a)2
. makes the numerator of Δ2

a(f ). small compared to the denominator,

and the dispersion is small. If |f (t)|. is large for (t − a)2 > 1., the same

factor causes an increase in the numerator compared to the denominator, and the

dispersion becomes large. If we interpret the function |f (t)|2 . as mass density,

then S =
+∞́

−∞
t |f (t)|2 dt

� ´ +∞
−∞ |f (t)|2 dt . is the center of mass and Δ2

S(f ). is the

moment of inertia with respect to the center of mass. If we interpret the function

|f (t)|2� ´ +∞
−∞ |f (t)|2 dt . as the density of a probability distribution, then S is the

expected value and Δ2
S(f ). is the variance of the probability distribution.

Examples

1. For f (t) = (2πσ 2)−1/4 e−(t−m)2/(4σ 2)
., σ > 0., the function |f (t)|2 . is the density

of the Gaussian distribution known from probability theory with mean m and

variance σ 2
.. The effective duration of f is therefore according to the previous

remark Dt(f ) = σ .. Using Plancherel’s theorem and the differentiation rule for

the Fourier transform, the effective bandwidth follows:

.D2
ω(f ) = Δ2

0(
�f ) = 1

2π

+∞
ˆ

−∞
ω2| �f (ω)|2 dω = 1

2π

+∞
ˆ

−∞
|�.
f (ω)|2 dω

=
+∞
ˆ

−∞
| .
f (t)|2 dt = 1

4σ 4

+∞
ˆ

−∞
(t − m)2|f (t)|2 dt = 1

4σ 2
.

The product of effective duration and bandwidth yields Dt(f )Dω(f ) = 1

2
..
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2. For the triangular function f (t) =
�

A(1 − |t |/T ) for |t | ≤ T

0 for |t | > T
., one calculates

.

+∞
ˆ

−∞
|f (t)|2 dt = 2A2T

3
and the effective duration is Dt(f ) = T√

10
.

According to Plancherel’s theorem,
+∞́

−∞
| �f (ω)|2 dω = 4πA2T

3
.. The center of

mass of | �f |2 . is zero because | �f |2 . is an even function. As in the first example, it

follows that

.

+∞
ˆ

−∞
ω2| �f (ω)|2 dω =

+∞
ˆ

−∞
|�.
f (ω)|2 dω = 2π

+∞
ˆ

−∞
| .
f (t)|2 dt = 4πA2

T
.

The effective bandwidth is thus Dω(f ) = √
3/T .. The time-bandwidth product

is

.Dt(f )Dω(f ) = √
3/

√
10 ≈ 0.548,

i.e., about 9.6%. larger than in the first example with the Gaussian function.

Illustratively The calculations in these examples show us that ω �f (ω). is square-

integrable if and only if
.

f (t). has this property. Since the bandwidth is given

by an integral over the squared magnitude of the derivative
.

f . of a time signal

f , a compression of the signal f must cause an increase in the bandwidth

through simultaneously growing slopes. Therefore, the functions f and �f . cannot

be simultaneously concentrated near individual points. A quantitative description of

this fact is provided by Heisenberg’s uncertainty principle. It was discovered by W.

Heisenberg in 1927 in quantum mechanics. Its significance for signal transmission

was investigated by Gabor (1946) . In our context, it reads as follows:

Uncertainty Principle for the Time-Bandwidth Product

Theorem 12.4 (Time-Bandwidth Product) For square-integrable signals f �= 0.

and any a, b ∈ R. the following holds

.Δ2
a(f )Δ2

b(
�f ) ≥ 1

4
.
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In particular, for the time-bandwidth product, it always holds that Dt(f )Dω(f ) ≥ 1

2
..

Equality Dt(f )Dω(f ) = 1/2. holds if and only if |f |. is a Gaussian function, i.e., if

f (t) = c ejat e−(t−m)2/(4σ 2)
. with any real constants a, m, c �= 0., σ �= 0..

Proof We can assume that with f , also tf (t). and
.

f (t). are square-integrable,

otherwise Δ2
a(f ) = ∞. or Δ2

b(
�f ) = ∞. would hold, and the inequality would be

trivially satisfied. For a = b = 0., integration by parts yields

.

β̂

α

tf (t)
.

f (t) dt = t |f (t)|2
����
β

α

−
β̂

α

�
|f (t)|2 + tf (t)

.
f (t)

�
dt,

so

.

β̂

α

|f (t)|2 dt = −2�
�
ˆ β

α

tf (t)
.

f (t) dt

�
+ t |f (t)|2

����
β

α

.

Due to the assumptions about f (cf. p. 402), the limits of the integrals exist for α →
−∞., β → +∞., and it holds that limα→−∞ α|f (α)|2 = limβ→+∞ β|f (β)|2 = 0..

Thus, it follows

.

+∞
ˆ

−∞
|f (t)|2 dt = −2�

�
ˆ +∞

−∞
tf (t)

.
f (t) dt

�
.

Using the Cauchy-Schwarz inequality and Plancherel’s theorem we obtain

.

� +∞
ˆ

−∞
|f (t)|2 dt

�2

≤ 4

� +∞
ˆ

−∞
t2|f (t)|2 dt

�� +∞
ˆ

−∞
| .
f (t)|2 dt

�

= 4

� +∞
ˆ

−∞
t2|f (t)|2 dt

��
1

2π

+∞
ˆ

−∞
ω2| �f (ω)|2 dω

�

and hence the uncertainty relation Δ2
0(f )Δ2

0(
�f ) ≥ 1

4
..

The general case for a �= 0. or b �= 0. can be obtained with g(t) = e−jbt f (t + a)..

Since Δ2
a(f ) = Δ2

0(g). and Δ2
b(

�f ) = Δ2
0(�g). hold, it follows

.Δ2
a(f )Δ2

b(
�f ) = Δ2

0(g)Δ2
0(�g) ≥ 1

4
.

The Cauchy-Schwarz inequality above becomes an equality if and only if tf (t). and.
f (t). are linearly dependent, i.e., if the differential equation ktf (t) = .

f (t). holds (cf.
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p. 308). The only nontrivial, square-integrable solutions of this differential equation

are of the form f (t) = c ekt2/2
. with c �= 0., k < 0.. With k = −1/(2σ 2)., the last

statement of the theorem follows. ��
Remark The smoothness assumptions on f from p. 402 can be omitted as with

Plancherel’s theorem (cf. p. 285), i.e., the Heisenberg uncertainty relation holds for

any square-integrable functions f . A proof of this more general statement was given

in 1931 by W. Pauli and H. Weyl. It can be found, for example, in the textbook of

Dym and McKean (1985).

Application Examples

1. Resolution in the Time Domain. In electrical measurement technology, it is

known that, for example, with an oscilloscope of 100 MHz. effective bandwidth

(Dω = 2π ·100 .MHz), only a temporal resolution in the order of 1 .ns is possible,

with Dω . as above, Dt ≥ 1/(2Dω) ≈ 0.8 · 10−9
.s. For signals of shorter effective

duration, the oscilloscope acts as a lowpass filter, and the signals are no longer

exactly reproduced, but smoothed in reproduction and prolonged in duration.

Start and stop pulses for measuring time intervals below the duration given by

the uncertainty principle then merge in the reconstruction; a time measurement

of such short intervals is therefore no longer possible.

2. Resolution in the Frequency Domain. The effective duration Dt . for which one

must sing a tone or play an instrument to assign it a pitch or frequency with

the accuracy Dω . is, according to the uncertainty principle, at least 1/(2Dω).. For

instance, if Dω = 2π ·1 .Hz, then Dt . must be greater than about 8 ·10−2
.s. In very

fast passages of a musical piece, slight intonation weaknesses of the virtuosos

cannot be noticed. Therefore, amateur musicians are recommended to choose the

fastest possible musical pieces for a potential performance.

3. Ultra-Short-Pulse Laser of High Bandwidth. The pulse duration of today’s

mode-locked short-pulse lasers is in the range of a few femtoseconds (1 fs

= 10−15
.s) with typical pulse repetition rates of 80–100 MHz up to 20–30 GHz.

The corresponding enormous bandwidths enable time-resolved spectroscopy,

for example, in the analysis of chemical reactions. In terahertz time-domain

spectroscopy (THz-TDS), a noninvasive broadband method for investigating

material properties in the far infrared is available. Application areas include

investigations of crystal structures, biomedical diagnostics, or pharmaceutical

quality control. Readers interested in laser technology are referred to the textbook

Rullière (1998).
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Heisenberg’s Uncertainty Principle in Quantum Mechanics

Since the Copenhagen Conference in 1927, atomic physics has undergone a

probabilistic interpretation with quantum mechanics. In this interpretation, exper-

imental experiences, their theoretical description, and interpretation were brought

together, unifying both the wave model and the particle model of matter without

contradiction. Historical developments of quantum mechanics and its mathematical

foundations can be found in works by P. A. M. Dirac (1958), Messiah (2003), or

other relevant literature.

Heisenberg’s uncertainty principle holds a central position in the development

and interpretation of quantum theory. To formulate it in the language of quantum

mechanics, we consider a free electron moving along the x-axis. However, its state

at a fixed time cannot be specified by a position x0 ∈ R. and a momentum p0 ∈ R.

as in classical mechanics but is described by a complex-valued, square-integrable

wave function ψ(x)., whose L2
. norm is

.�ψ�2 =
� +∞
ˆ

−∞
|ψ(x)|2 dx

�1/2

= 1.

The functions xψ(x). and
.
ψ(x). are also assumed to be square-integrable with

ψ(x).. The function |ψ |2 . is interpreted as the probability density of the electron’s

presence. The position of the particle is thus a random variable with the expected

value a =
+∞́

−∞
x|ψ(x)|2 dx . and the variance Δ2

a(ψ).. The probability that a position

measurement in the state ψ . yields a value x ∈ [x1, x2]. is
´ x2

x1
|ψ(x)|2 dx ..

The variance Δ2
a(ψ). is a measure of the uncertainty of the position, as the larger

the variance, the greater the probability of presence in intervals that do not contain

the expected value a. If the variance is very small, then the position is said to be

sharply determined. The probability of presence in very small intervals around a

is then large because the density function |ψ |2 . is concentrated around a for small

variance.

The momentum of the electron is essentially given by the Fourier transform of

ψ ., namely by the function

.�ψ(p) = (2π h̄)−1/2�ψ(p/h̄).

The constant h̄. is the reduced Planck constant. The momentum is also a random

variable. The function |�ψ |2 . is interpreted as the probability density for the momen-

tum distribution. The expected value b for a momentum measurement is then
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.b =
+∞
ˆ

−∞
p|�ψ(p)|2 dp = h̄

2π

+∞
ˆ

−∞
p|�ψ(p)|2 dp.

The variance Δ2
b(

�ψ). is a measure of the uncertainty of the particle’s momentum.

The sharper the momentum is determined, the smaller Δ2
b(

�ψ). is. For the product

of the variances of ψ . and �ψ ., the uncertainty relation Δ2
a(ψ)Δ2

b/h̄(
�ψ) ≥ 1/4. holds

according to p. 404. From

.Δ2
b(

�ψ) = 1

2π h̄

+∞
ˆ

−∞
(p − b)2

�����ψ
�

p

h̄

�����
2

dp

= h̄2

2π

+∞
ˆ

−∞

�
p − b

h̄

�2

|�ψ(p)|2 dp = h̄2Δ2
b/h̄(

�ψ)

the following uncertainty principle, discovered by W. Heisenberg (1901–1976) in

1927, results. It is one of the fundamental statements of quantum mechanics.

Heisenberg’s Uncertainty Principle Position and momentum of an electron in

the state ψ . are not simultaneously sharply defined, but rather afflicted with an

uncertainty. For the wave functions ψ . and �ψ ., the following uncertainty relation

holds

.Δa(ψ)Δb(�ψ) ≥ h̄/2.

The statement also applies to wave functions in three-dimensional space. One

just needs to apply the Fourier transform for functions of several variables. The

uncertainty relation is not based on limits of measurement accuracy but is a general

property of functions. For example, one can speak of the frequency of an oscillation

“in the pure sense” only if the oscillation process is periodic and thus particularly

unlimited in time. A duration is then entirely undefined. Conversely, the shorter

the process lasts, the more questionable it is to speak of periodicity and thus of

frequency; the concept itself becomes fuzzy, the process must be mathematically

described by the corresponding spectral function instead of a pure frequency, and

uncertainty relations arise. In electrical engineering, this fact is known, as we have

seen, in the case of the time-duration-bandwidth product. Quantum mechanics

shows that even position and momentum in the physical description of atomic

particles through probability densities are subject to such uncertainties. The same

applies to other quantities whose product yields an action. For example, one obtains

an analogous uncertainty relation for the product of energy and duration of an atomic

event. Applications of the uncertainty principle to questions in physics, such as the

explanation of the tunneling effect, can be found in the according literature.
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12.5 Time-Frequency Analysis, Windowed Fourier
Transforms

For many applications in signal processing, the Fourier transform in its original form

is not suitable. Because the Fourier integral extends over the entire time axis, a full

knowledge of the signal’s time course would be necessary to analyze the spectral

properties of a signal, including knowledge of all future signal values t > t0 . for

analysis at a fixed time t0 .. Furthermore, the asymptotic properties of the Fourier

transform show that even temporally narrow disturbances affect the entire spectrum

(see p. 282). In its classical form, the Fourier transform also does not allow for

simultaneous time-frequency analysis. For example, speech or a piece of music

in our everyday experience has a specific “time pattern” and at the same time a

specific “frequency pattern.” However, the spectral function of a signal does not

show at what times and with what respective amplitudes a specific angular frequency

ω . occurs in a signal f , but rather accumulates contributions of the same angular

frequency ω . over the entire time course of f in �f (ω).. D. Gabor (1900–1979)

already noticed these disadvantages for signal processing purposes, and in 1946

in his work “Theory of Communication,” he proposed time-frequency localization

through Fourier transforms with window functions.

To obtain information about the “time-frequency pattern” of a signal, one

determines not the spectral function �f . of the entire signal, but the spectral functions

for time segments of f . Time segments of a signal f are obtained by multiplying f

with functions of finite effective duration. Such functions are referred to as window

functions or time windows.

Windowed Fourier Transforms, Gabor Transform

All signals f and window functions w are assumed to be piecewise continuously

differentiable and square-integrable. For window functions w, we assume that

w �= 0. and furthermore that with w(t). and �w(ω)., both tw(t). and ω�w(ω). are also

square-integrable. The window functions w then have finite effective duration and

bandwidth (see Sect. 12.4). In particular, |t |1/2w(t). and (1 + |t |)w(t). are square-

integrable, and the Cauchy-Schwarz inequality for the product (1 + |t |)−1(1 +
|t |)w(t). shows that w(t). is integrable.

Analogously, �w(ω). is integrable. The functions w(t). and �w(ω). are then also

continuous. As in previous sections (see p. 311), we use the notations �f (t)|g(t)� =
+∞́

−∞
f (t)g(t) dt . for the inner product of square-integrable functions and �f � =

�f (t)|f (t)�1/2
. for the norm of f in L2(R).. The quantities

.t∗ = �tw(t)|w(t)�/�w�2 or ω∗ = �ω�w(ω)|�w(ω)�/��w�2
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Fig. 12.13 From “Syrinx” of Claude Debussy

Fig. 12.14 Time-frequency localization of the “note” wω0,t0 . in the time-frequency window [t0 +
t∗ − Dt(w), t0 + t∗ + Dt(w)] × [ω0 + ω∗ − Dω(w), ω0 + ω∗ + Dω(w)].

are referred to as the time center and frequency center of a window w �= 0. (see

p. 403).

Definition The transform Gw ., which maps a signal f to the function Gwf = �f .,

defined by �f (ω, t) = �f (s)|w(s − t) ejωs� =
+∞́

−∞
f (s)w(s − t) e−jωs ds,. is called

the windowed Fourier transform with the time window w. It is also abbreviated as

STFT (Short-Time Fourier Transform). The windowed Fourier transform with the

Gaussian window w(t) = gα(t) = (4πα)−1/2 e−t2/(4α)
., α > 0,. is referred to as the

Gabor transform Gα ..

Instead of periodic harmonic oscillations ejωt
., the windowed Fourier transform

uses translations of amplitude-modulated oscillations with the envelope w. To give

an illustrative interpretation of �f (ω0, t0). for fixed ω0 . and t0 ., consider the first

two bars5 of the wonderful flute piece “ Syrinx” of Claude Debussy (1862–1918)

(Fig. 12.13):

The “time-frequency pattern” is given in musical notation by the positions and

note values of the individual notes, supplemented by dynamic indications such as

“forte” or “piano.” Similarly, one can consider the function

.wω0,t0(s) = w(s − t0) ejω0s

for a time window w with the time center t∗ . and the frequency center ω∗
. as a

“note”, which is localized in the frequency range around ω0 + ω∗
. with the effective

bandwidth Dω(w). and in the time range around t0 + t∗ . with the effective duration

Dt(w). (Fig. 12.14).

5 The invention of musical notation is—like others—an ingenious human achievement and its

expressive possibilities are inexhaustible.
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The complex number �f (ω0, t0) = �f (s)|wω0,t0(s)�. then indicates (see p. 60),

the extent to which the “note” wω0,t0 . is present in the signal f , i.e., whether

approximately at the time t0 + t∗ . the angular frequency ω0 + ω∗
. is represented

in the signal, and if so, with what amplitude and phase.

The approximation error is due to the time duration Dt(w) > 0. and the

bandwidth Dω(w) > 0. of the window w �= 0., and thus due to the fact that the values

of wω0,t0 . and �wω0,t0 . in the corresponding time-frequency window (see figure) with

appropriate weight enter into the integral

. �f (ω0, t0) = �f (s)|wω0,t0(s)� = (2π)−1� �f (ω)|�wω0,t0(ω)�.

The smaller Dt(w). is, the better �f (ω, t1). and �f (ω, t2). can be distinguished for

adjacent time points t1 . and t2 ., i.e., the more easily the frequencies present in the

signal can be assigned to the different times at which they occur. Therefore, the

smaller Dt(w). is, the better the time resolution by �f .. The smaller the bandwidth

Dω(w). is, the better the corresponding resolution of different frequencies. However,

as we saw in the last section, the quality of a simultaneous time-frequency

localization is limited by the uncertainty relation Dt(w)Dω(w) ≥ 1/2.. The best

compromise with regard to the uncertainty relation is therefore the windowed

Fourier transform with Gaussian windows proposed by Dennis Gabor (1900–1979),

known as the Gabor transform (see p. 404).

Example A short-term model for a siren tone or chirp is approximately the function

f (t) = A sin(g(t)) with g(t) = 2π t
�
αt + βt2

�
. for 0 ≤ t ≤ 10.s and constants

A, α, β.. The derivative of the argument g�(t) = 2π t (2α + 3βt). can be considered

as the instantaneous angular frequency at time t . The magnitude spectrum, approx-

imately calculated with A = 1., α = 4. [1/s2
.], β = −4/15. [1/s3

.] over T = 10.s,

shows a multitude of frequencies up to the maximum frequency 20 Hz, but not the

parabolic frequency modulation and not the instantaneous frequencies at different

times (left image below). The graph of an approximation for | �f |., �f . the windowed

Fourier transform of f with the “Hann window” w(t) = 0.5 − 0.5 cos(ω0t). for

0 ≤ t ≤ 1.s, w(t) = 0. otherwise (ω0 = 2π . rad/s), on the other hand, clearly

shows the rise and fall of the instantaneous frequencies and corresponds to our

usual impression of the variable frequency of the siren tone (right image). For

the calculation of the approximations of | �f |. and | �f |. with the DFT, also compare

p. 347 and the following Sect. 12.6. For Fig. 12.15 a 512-point DFT was used over

a total of T = 10 .s, with the DFT coefficients |�ckT |. plotted as an approximation

for | �f (2πk/T )|.. In the second case, 50 Hann windows of duration 1 s were used at

intervals of 0.2.s each. Per time segment, a 128-point DFT was performed, and the

resulting (single-sided) DFT magnitude spectra were combined to form the second

image in Fig. 12.16. Neither representation shows the constant amplitude A = 1..

One reason is the strong aliasing effects due to the frequency modulation. The sum

of the |�ck|2 .of the left image agrees numerically very well with the quadratic mean of

f in [0, T ]. (in both cases, the value is about 0.5). Numerical integration to calculate

| �f |. for 20 Hz at t0 = 5.s results in approximately 0.24, as shown in the spectrogram
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Fig. 12.15 DFT of the siren

signal

Fig. 12.16 STFT of the siren

signal

in Fig. 12.16. The signal values (and thus A) can only be approximately recovered

from the signal DFT using an interpolation polynomial or the formula for discrete

reconstruction from the data on page 415. At end of the book on page 483 you will

see another spectrogram of a piece of music like the right image here.

Reconstruction of a Signal from Its Windowed Fourier
Transform

For a fixed chosen window w �= 0., let now the transform Gwf = �f . of a signal f be

given. An inverse formula for reconstructing the original signal f from the values of
�f . can be obtained by representing the local part fs(t) = w(t − s)f (t). as a Fourier

integral. For fixed s ∈ R., �f (ω, s). is the Fourier transform of fs(t).:

. �f (ω, s) = �fs(ω) = �f (t)|w(t − s) ejωt � = �f (t)w(t − s)| ejωt �.

According to our assumptions about f and w (cf. p. 409), fs . is integrable in t and

piecewise continuously differentiable, so that with the Fourier inversion formula for

each continuity point t of f (cf. p. 271), it holds

.w(t − s)f (t) = fs(t) = 1

2π

+∞
ˆ

−∞
�f (ω, s) ejωt dω.
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Multiplying both sides of this equation with w(t − s)., then integrating with respect

to s, and dividing by �w�2
. give, due to

+∞́

−∞
|w(t − s)|2 ds = �w�2

., the desired

reconstruction formula.

Theorem 12.5 (Pointwise Reconstruction Formula) At each continuity point t

of a piecewise continuously differentiable, square-integrable function f , the value

f (t). can be recovered from the windowed Fourier transform of f by

.f (t) = 1

2π�w�2

+∞
ˆ

−∞

+∞
ˆ

−∞
�f (ω, s)w(t − s) ejωt dω ds.

At discontinuity points t of f , the right side gives, as in the Fourier inversion

formula, the value [f (t+) + f (t−)]/2..

If �f (ω, s) = �f (t)|wω,s(t)�. is understood as the projection of the sig-

nal onto its time-frequency components, then the reconstruction formula is the

“back-projection” by which the signal is recovered from the superposition of its

components.

Remarks From �w�2�f (t)|f (t)� =
+∞́

−∞

´ +∞
−∞ |fs(t)|2 dt ds < ∞. it follows that the

functions fs . are square-integrable with respect to t for almost all s (cf. Appendix B,

Fubini’s theorem). Applying the Plancherel equation to the inner integral then gives

with w �= 0.

.�f �2 = 1

2π�w�2

+∞
ˆ

−∞

ˆ +∞

−∞
| �f (ω, s)|2 dω ds = 1

2π�w�2
� �f �2.

This equation corresponds to the Plancherel equation for the Fourier transform and

implies that the windowed Fourier transform Gw . can be extended to a continuous

injective mapping defined on the whole L2(R). into L2(R2). (cf. p. 308). The image

V = Gw(L2(R)). is a closed subspace of L2(R2)., and any function h ∈ L2(R2). can

be uniquely decomposed (cf. p. 61 and later 14.1, p. 449) in the form h = hV + h⊥
V .

with hV ∈ V . and

.�v|h⊥
V � =

+∞
ˆ

−∞

ˆ +∞

−∞
v(ω, s)h⊥

V (ω, s) dω ds = 0.

The function hV . is the orthogonal projection of h onto V . The adjoint operator G∗
w .

to the operator Gw . is defined by the equation �f |G∗
wg� = �Gwf |g�.. From �f �2 =

(2π�w�2)−1� �f �2
. it follows with the polarization equation (p. 284) that �f1|f2� =

(2π�w�2)−1�f1|G∗
wGwf2�. for all f1 ., f2 ∈ L2(R).. Thus, f = (2π�w�2)−1G∗

wGwf .
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holds for all f ∈ L2(R).. The inverse transform to Gw . is therefore the restriction

of (2π�w�2)−1G∗
w . to the image V of Gw .. For the signals we consider, it is given

as an integral transformation by the right side of the reconstruction formula. If h ∈
L2(R2). has the decomposition h = hV + h⊥

V . with the part h⊥
V . orthogonal to V ,

then �f |G∗
wh⊥

V � = �Gwf |h⊥
V � = 0. for all f ∈ L2(R)., thus G∗

wh⊥
V = 0.. With f =

(2π�w�2)−1G∗
whV ., Gwf = hV ., it follows

.(2π�w�2)−1GwG∗
wh = (2π�w�2)−1GwG∗

whV = hV .

The orthogonal projection of L2(R2).onto V is thus the mapping (2π�w�2)−1GwG∗
w ..

For more detailed information about adjoint operators and orthogonal projections,

see for example Weidmann (1980).

With these remarks, it can be seen how desired time-frequency properties can be

approximated in signal processing.

Signal Processing with Windowed Fourier Transforms

Given a windowed Fourier transform Gw . for a fixed chosen window w �= 0., since

the functions Gwf ., f ∈ L2(R)., are bounded and L2(R2). also contains unbounded

functions, not every square-integrable function h(ω, t). can be the windowed Fourier

transform of a function f ∈ L2(R).:

V = Gw(L2(R)) �= L2(R2).. Otherwise, signals with arbitrary time-frequency

properties could be constructed—in contradiction to Heisenberg’s uncertainty

principle. However, one can proceed as follows to obtain signals that approximate

the desired time-frequency properties as closely as possible:

For a given signal f (t)., the windowed Fourier transform �f = Gwf . is computed

and �f . is processed as desired to h from L2(R2)., for example, by filtering, shifting

values, amplifying, etc. The function h is the model of the desired time-frequency

properties. However, in general, there is no signal g such that h = Gwg .. The signal

fh . in L2(R)., whose time-frequency properties are very close to those of h, is fh =
(2π�w�2)−1G∗

wh., because according to the preceding remarks, the function �fh . as

the orthogonal projection of h onto V minimizes the mean square error �h − �f �.,

f ∈ L2(R). (cf. also later Sect. 14.1, p. 449).

Discrete Windowed Fourier Transform

Of great importance for numerical approximation and thus for digital signal

processing is the question of whether a signal can be reconstructed from the

sampled values of its windowed Fourier transform. We present a sampling theorem
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and illustrate some fundamental aspects of discrete time-frequency analysis with

windowed Fourier transforms.

Under the same conditions as for the reconstruction formula on p. 413, we

assume that the window function w �= 0. vanishes outside an interval [a, b].. For

a fixed value of s, the support of fs(t) = w(t − s)f (t). is contained in [a+ s, b+ s]..
Fourier series expansion of fs . in this interval yields for each continuity point t of f

in [a + s, b + s].

.fs(t) =
+∞�

k=−∞
ck(s) ejkω0t with ω0 = 2π

b − a
,

ck(s) = 1

b − a

b+s
ˆ

a+s

f (t)w(t − s) e−jkω0t dt = ω0

2π
�f (kω0, s).

Multiplying fs(t). by w(t − s). results in the functions wkω0,s ., which were defined

by wkω0,s(t) = w(t − s) ejkω0t .:

.|w(t − s)|2f (t) = ω0

2π

+∞�

k=−∞
�f (kω0, s)wkω0,s(t).

Instead of integrating this equation over s and dividing by �w�2
. as in the

reconstruction formula on p. 413, we form a discrete approximation for �w�2 =
+∞́

−∞
|w(t − s)|2 ds . by At0(t) = t0

+∞�

n=−∞
|w(t −nt0)|2 . and sum over sn = nt0 ., n ∈ Z.:

.At0(t)f (t) = ω0t0

2π

+∞�

n=−∞

+∞�

k=−∞
�f (kω0, nt0)wkω0,nt0(t).

Due to the limited support of w, the series for At0(t). has only finitely many nonzero

terms. Now we obtain the desired sampling theorem, i.e., a discrete reconstruction

formula under the condition At0(t) �= 0.:

Theorem 12.6 (Discrete Reconstruction) If At0(t) �= 0. everywhere, then the

signal f is given at each continuity point t by

.f (t) = ω0t0

2π

+∞�

n=−∞

+∞�

k=−∞
�f (kω0, nt0)wkω0,nt0(t)At0(t)

−1.

The better the time-frequency localization of w, the faster the values |wkω0,nt0(t)|.
will decrease. In practice, for bandlimited signals f , finite partial sums of the right
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side with discrete approximations of the values of �f . yield good approximations for

f (t)..

From the derivation of the formula, the following conditions for a stable

reconstruction are determined:

1. For numerically stable reconstruction, it is not enough to require At0(t) > 0.,

but inft∈R At0(t) > 0.. Otherwise, small errors in the calculation of the values
�f (kω0, nt0). would lead to very large errors in f (t). at points t where the value

of At0(t). is very close to zero. This is a condition on the sampling rate because

limt0→0+ At0(t) = �w�2 �= 0. holds for all t if the window is assumed to be

continuous. Thus, this stability condition can be maintained for sufficiently small

t0 ..

2. A necessary condition for At0(t) > 0. is 0 < t0 ≤ b − a ., otherwise At0(t) = 0.

for b < t < a + t0 .. The given discrete reconstruction is therefore certainly not

possible if ω0t0 > 2π ..

Such conditions are typical when searching for stable discrete reconstruction

formulas. Considering window functions w that are not time-limited, we will

analogously demand, as in point 1, that supt∈R At0(t) < ∞. and that both this upper

bound and the lower bound from point 1 converge to �w�2
. as t0 → 0+..

The mathematical task in the search for sampling formulas is to find conditions

on the window function and the set of sampling points (kω0, nt0)., k, n ∈ Z., such that

the operator Gω0,t0
w ., which maps a signal to the sequence

��f (t)|wkω0,nt0(t)�
�
k,n∈Z .,

is injective. To obtain numerically stable formulas, Gω0,t0
w . must additionally be

continuous in an appropriate sense and have a continuous inverse mapping. This task

leads in modern signal processing to the study of complete orthonormal systems in

suitable function spaces. Instead of pointwise convergent sampling series, we then

consider series that approximate the analyzed signals in the norm of the function

space used. The considered signals can also be functions f (t, x). that depend not

only on time t but also on a spatial variable x.. Such signals appear, for example,

in image processing. Accordingly, systems of functions with multiple variables are

used. Readers who find this section a motivation to delve deeper into the subject,

given the importance of digital signal processing in audio and video technology but

also in many other areas of engineering and natural sciences, are referred to further

literature, such as Daubechies (1992), Feichtinger and Strohmer (2003), Gröchenig

(2001), or Meyer (1993).

Finally, some central results of discrete time-frequency analysis with windowed

Fourier transforms are cited:

1. If the product ω0t0 > 2π . holds, then for any choice of window w, there

are always signals f ∈ L2(R)., f �= 0., that are orthogonal to all functions

wkω0,nt0 .. Therefore, a reconstruction of such signals from their windowed Fourier

transforms Gω0,t0
w f . is not possible. Discrete reconstruction formulas are generally

subject to the condition ω0t0 ≤ 2π ..

2. If the function system wkω0,nt0 ., k, n ∈ Z., forms a complete orthogonal system in

L2(R)., then necessarily ω0t0 = 2π . must hold.
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3. Even for ω0t0 = 2π ., the functions wkω0,nt0 ., k, n ∈ Z., with the Gaussian window

proposed by D. Gabor w(t) = (2π)−1/4 e−t2/4
., do not form an orthonormal

system in L2(R).. It can be shown that

. inf
�
�f �−2

�

k,n∈Z
|�f |wkω0,nt0�|2 : f ∈ L2(R), f �= 0

�
= 0

holds. Although the functions wkω0,nt0 ., k, n ∈ Z., form a complete system in

L2(R). (i.e., any f ∈ L2(R). can be approximated arbitrarily well by linear

combinations of the wkω0,nt0 . with respect to the norm of L2(R).), a numerically

stable reconstruction of signals f ∈ L2(R). from the coefficients �f |wkω0,nt0�. is
generally not possible.

4. While orthogonality relations for the functions wkω0,nt0 . would be desirable,

practical requirements for good time-frequency localization of the windows even

force ω0t0 < 2π ., i.e., higher sampling rates are necessary than those that allow

for the orthogonality of the system wkω0,nt0 .. This statement is contained in the

uncertainty principle of R. Balian and F. Low:

If the functions wkω0,nt0 . form a complete orthonormal system in L2(R). for a

window w ∈ L2(R). with ω0t0 = 2π ., then it holds that

.

+∞
ˆ

−∞
t2|w(t)|2 dt = ∞ or

+∞
ˆ

−∞
ω2|�w(ω)|2 dω = ∞.

5. For ω0t0 < 2π ., there are windows w and corresponding complete function

systems (the so-called Gabor frames) wkω0,nt0 ., k, n ∈ Z. that enable stable

reconstruction with very good time-frequency localization, i.e., with

.

+∞
ˆ

−∞
t2|w(t)|2 dt < ∞ and

+∞
ˆ

−∞
ω2|�w(ω)|2 dω < ∞.

A derivation and detailed discussion of these results can be found, for example, in

the already mentioned book of Daubechies (1992) or in Gröchenig (2001). Aspects

of the window functions when using the DFT to approximate windowed Fourier

transforms are discussed in the following section.

12.6 Time Windows with the Discrete Fourier Transform

In practice, the spectrum of a signal f can often not be calculated exactly. Instead,

one usually uses the spectral function of a signal segment f wT . with a time window

wT �= 0. as an approximation. Also, when analyzing unknown signals f , the
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observation duration T is necessarily finite, so that only information about time

segments f wT . can be processed. In time-frequency analysis, as in the last section,

the interest is also in the spectral functions of such time segments of the signal.

For the approximate calculation of the Fourier transform of f wT ., the discrete

Fourier transform is often used (see p. 347 and Sect. 6). The spectrum �f wT . of

the signal segment f wT . is different from the actual spectrum �f . of f . If wT . is a

time window with support in [0, T ]., then according to the modulation theorem from

p. 283 for square-integrable or bandlimited signals f

.�f wT = 1

2π
�f ∗ �wT . (12.1)

The spectral function of f wT . is compared to �f . “smeared, smoothed, and blurred”

due to the convolution of �f . with �wT .. The shorter the observation duration T , the

greater the bandwidth of wT . according to the uncertainty principle, and the worse

the frequency localization of wT . and thus of f wT . (see Sects. 12.4 and 12.5). A

typical problem is then, for example, the resolution of periodic signal components

of closely adjacent frequencies, especially when these signal components have very

different amplitudes.

The observation duration T and the shape of the time window wT . also have

an impact on the quality of the approximations for �f wT ., which are obtained with

a finite discrete Fourier transform from sampled values of f wT .. Therefore, when

using the discrete Fourier transform, some fundamental aspects of the interaction

between the observation duration T , the properties of the weighting function wT .,

and the sampling rate used for the discrete Fourier transform must be considered.

Truncation Effects in the Discrete Fourier Transform

In the discrete Fourier transform, from finitely many values yn = f (nΔt)., Δt > 0.,

n = 0, . . . , N − 1., of a signal f , the Fourier coefficients

.�ck = 1

N

N−1�

n=0

yn e−jkn2π/N

are calculated for k = 0, . . . , N − 1. (see 6, p. 86). We assume the signal f to

be continuous in [0, T [. with the limit value f (T −). and piecewise continuously

differentiable. The sampled time section of f beyond the sampling period of

duration Ta = (N − 1)Δt . can be arbitrarily extended to a periodic function fp .

with the period p = NΔt = T ., for example as in the following figure, where we

have added a straight segment between Ta . and T so that fp . becomes continuous

(see Fig. 12.17).
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Fig. 12.17 Last sample time is Ta < T ., and a possible T -periodic extension could be fp .

Let us denote by wT . the rectangle window

.wT (t)=1 for 0 ≤ t < T , wT (t)=0 otherwise,

then the quantities�ck .are on one hand approximations for Fourier coefficients ck(fp).

of fp ., and on the other hand, according to p. 347, they also yield approximations

for sample values of �f wT . and thus approximations for the Fourier coefficients

ck = ck(f wT ). of f wT .. In many applications �ckT . also serves as an estimator for
�f (2πk/T ). (see also Exercise A4 of Chap. 11).

If, for instance, N is an even number, then one uses the value �ck . for the

indices k = 0, . . . , (N − 2)/2., respectively, as an approximation for the Fourier

coefficient ck . of f wT .. For k = (N + 2)/2, . . . , N − 1, �ck . serves accordingly as

an approximation for c−N+k . and �cN/2 . as an approximation for (c−N/2 + cN/2)/2.

(see p. 88). The corresponding oscillations to the fundamental circular frequency

ω0 = 2π/T .

.v0(t) = 1, v1(t) = ejω0t , . . . , v(N−2)/2(t) = ej (N−2)ω0t/2, vN/2(t)

= cos(Nω0t/2), v(N+2)/2(t) = e−j (N−2)ω0t/2, . . . . . . , vN−1(t) = e−jω0t ,

generate an N -dimensional function vector space V in L2([0, T ]). (see p. 12).

For the rectangle window wT ., the T -periodic extension of f wT . has jump

discontinuities at t = kT ., k ∈ Z., if f (0) �= f (T −).. According to p. 87, with

continuous fp . as above, the aliasing relationships hold

.�ck =
+∞�

m=−∞
ck+mN(f wT ) + 1

2N
(f (0) − f (T −)) =

+∞�

m=−∞
ck+mN(fp). (12.2)

If the signal f is a mixture of harmonic oscillations with circular frequencies kω0 .,

k = 0, . . . , N/2., i.e., if f (t)=
N−1�

k=0

αkvk(t). is a linear combination of the functions

v0, . . . , vN−1 ., then f (0)=f (T −)., and with the inner product from p. 12, it follows

from the aliasing relationship (12.2)
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.�ck = �f (t)|vk(t)� = 1

T

T̂

0

f (t)vk(t) dt = αk. (12.3)

The orthogonal projections of f onto the one-dimensional subspaces of V generated

by the functions vk . then yield the exact spectral values of f .

It is different if the periodic extension of f wT . has a jump discontinuity at t = T .

or if the originally observed signal f contains harmonic oscillations whose period

duration does not match T . In practice, this will often be the case when analyzing

unknown signals f , which are sampled over an arbitrarily chosen time period.

Simple examples of such cases are given by the functions f1(t) = cos(t). and

f2(t) = − cos(t/2) + cos(t)/2.. For T = π ., the T -periodic extension of f1wT .

with the rectangle window wT . has a jump discontinuity at T , while that of f2wT . is

continuous, but f2 . is not T -periodic.

If f wT (0) �= f wT (T −)., then every T -periodic extension, T = NΔt ., of f

beyond the interval [0, Ta]., Ta = (N − 1)Δt ., has jump discontinuities or steep

flanks in the vicinities of the points kT , k ∈ Z. (see last figure). From considerations

on the asymptotics of Fourier coefficients (p. 48), it follows that the magnitudes

of the coefficients ck . of a T -periodic extension of the signal section for |k| → ∞.

decrease only slowly. Consequences are, according to Eq. (12.2), aliasing effects in

the coefficients �ck . of the discrete Fourier transform.

Even if by chance f wT (0) = f wT (T −). as in the example f2wT . above,

aliasing effects arise as soon as f contains oscillation components with frequencies

ν �= k/T ., and also if they lie within the Nyquist interval with the cutoff frequency

N/(2T )..

Every signal component with a circular frequency ω1 �= 2πk/T . has nonzero

projections in all subspaces of L2([0, T ])., which are generated by the functions vk .

for k = 0, . . . , N − 1.:

.�ejω1t wT (t)|vk(t)� �= 0 for all k = 0, . . . , N − 1.

Example Consider for example the signal g(t) = A ejω1t ., and then for the kth

Fourier coefficient ck(gwT ). of gwT . with the rectangle window wT . for the interval

[0, T [. according to (12.1) and p. 347 with �g(ω) = 2πAδ(ω − ω1).:

.ck(gwT ) = 1

T
�gwT

�
2πk

T

�
= 1

2πT
(�g ∗ �wT )

�
2πk

T

�
(12.4)

= A

T
e−j (2πk/T −ω1)T /2 �wT

�
2πk

T
− ω1

�

= (−1)kA ejω1T/2 sin(πk − ω1T/2)

πk − ω1T/2
.
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Fig. 12.18 The arrows show

the absolute weights gk . at

kω0 .

These coefficients distort, as per (12.2), the amplitudes and phases of the estimates

�ck . of signal components at frequencies k/T ., k ≤ N/2., when ω1 �= 2πk/T .. When

using the rectangular window according to (12.2) and (12.4), they contribute as

alias effects to all DFT coefficients �ck .. Thus, they are “spread” onto the oscillations

at frequencies k/T . (see the next figure). This phenomenon is referred to in signal

processing as the spectral leakage effect. Additionally, for all �ck ., there is a constant

additive component (g(0) − g(T −))/(2N). if the T -periodic extension of gwT . at T

has a jump discontinuity.

The spectral leakage effect occurs with modified coefficients ck(gwT ). even

when using other window functions wT . instead of the rectangular window, and it

results from the uncertainty principle for the time-duration-bandwidth product of

the window wT ..

Figure 12.18 shows some absolute weights gk = |ck(gwT )/A|., through which

the amplitude A of gwT . is distributed onto the Fourier coefficients of frequencies

adjacent to ω1 �= 2πk/T , k ∈ Z. by the periodicity induced by wT ..

We briefly consider an example that illustrates the discussed truncation effects

due to the rectangular window using specific data for a given signal f .

Example For the 4π .-periodic function f (t) = cos(t/2)., the segment f wT . with the

rectangular window wT . of length T = π . has the spectrum ck = − 2 + 8kj

π(16k2 − 1)
..

The π .-periodic extension with f wT (0) = f wT (π). has the mean value c0 = 2/π .

on [0,π [. and jump discontinuities of height S1 = 1. at t = kπ . (k ∈ Z.). A 3-

point DFT on [0,π [. yields the DFT coefficients �c0 = (3 + √
3)/6. and �c1 = �c2 =

(3 − √
3)/12 − j (3 − √

3)/12..

We specifically examine �c0 .. The series

∞�

m=1

(c3m + c−3m)= − 4

π

∞�

m=1

1

144m2 − 1
.

has, according to (11.2)., the limit S2 = �c0 − c0 − S1/6 = − 2

π
+ 2 + √

3

6
.. Using

known equations for the digamma function Ψ = Γ �/Γ ., S2 . can also be obtained as

.S2 = Ψ (11/12) − Ψ (1/12) − 12

6π
= − 2

π
+ cot(π/12)

6
.

In decimal approximation, for �c0 ., the decomposition now yields
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.�c0 = c0 + S1/6 + S2 ≈ 0.636619 + 0.166667 − 0.014611 = 0.788675.

Selection of Time Windows in the Discrete Fourier Transform

By choosing an appropriate window function wT ., one can achieve a reduction

of the distortion effects in the spectrum of the discrete Fourier transform and

thereby reduce the error in estimating the spectrum of f wT . or of f . The frequency

localization is better, according to the considerations on the uncertainty principle in

Sect. 12.4, the faster |�wT (ω)|. decreases for increasing |ω|.:
1. One usually chooses a window function wT �= 0. that is as smooth as possible

with support in [0, T ]. and wT (0) = wT (T ) = 0.. Then the T -periodic extension

of f wT . for continuous signals f has no jump discontinuities, and the aliasing

effects described by formula (12.2) are reduced if the Fourier coefficients of this

extension decrease rapidly (cf. 4.5). One then obtains a better estimate with �ckT .

than with the rectangular window for the value �f (2πk/T )., which is often sought

in applications.

2. One chooses the observation duration T to be as long as possible. The smaller T

is, the larger the bandwidth of wT ., i.e., the worse the frequency localization.

3. One chooses the number N of samples to be as high as possible. More signal

frequencies are then resolved exactly (cf. Eq. (12.3)). For fully observed time-

limited signals, “zero padding” improves the approximations for �f ..

4. The leakage effect is less significant, the faster the side lobes of |�wT |. decrease

compared to the main lobe (cf. the preceding image). Therefore, window

functions are often chosen where these side lobes of |�wT |. decrease rapidly.

In practice, many different weighting functions wT . are used. The use of special

window functions and thus the compromise that must always be made due to

the uncertainty principle depend on the aim of the respective application. Criteria

besides the decay behavior of �wT . and the bandwidth of the window include, for

example, its energy concentration in a given frequency band or simple calculation

and implementation possibilities in software applications. A detailed comparative

discussion of commonly used window functions can be found, for example, in

Slepian (1983) or in Harris (1978).

Example To conclude, we consider as an illustrative example the signal

.f (t) = A1 cos(2πν1t) + A2 cos(2πν2t)

with A1 = 1., A2 = 0.03., ν1 = 10.25 .Hz, and ν2 = 12 .Hz. Figure 12.19 shows the

discrete Fourier transform with the rectangular window wT ., T = 2 .s, for N = 128..

The signal frequency ν2 . cannot be detected. With the same T and N , the often-used

Hann window wT .,
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Fig. 12.19 128-point DFT,

T = 2.s, rectangular window

Fig. 12.20 128-point DFT,

T = 2.s, Hann window

Fig. 12.21 1024-point DFT,

T = 5.s, Hann window

.wT (t) = 0.5 − 0.5 cos(2π t/T ), 0 ≤ t ≤ T

is used in the second Fig. 12.20. In the third Fig. 12.21, this window is used again

with T = 5 .s and N = 1024.. From the result of this DFT in the third image, the

12 .Hz signal frequency can at least be suspected. Displayed is the single-sided DFT

magnitude spectrum.

One notices from the graphs that the height of the “peaks” does not correspond

to the actual (half) amplitude values of the two oscillations. This is a consequence

of the aliasing effect and the attenuations due to the added weighting functions.

Therefore, caution is required, and additional information about the nature of a

problem is needed to reasonably interpret DFT spectra of unknown signals, which

are far more complex in practice than this small example and often affected by

disturbances.

Next is another, still simple example of a DFT spectrum of a real signal,

calculated with the rectangular window. Figure 12.22 shows the 8820-point DFT

of an audio signal of 4 s duration, consisting only of the tones F4, A4, C5, F5 of the

F major chord, played on the piano and enriched with the tones F4, Eb5, F5, played

on the alto saxophone.

The tones have the frequencies in equal temperament: F4=349.23, A4=440,

C5=523.25, Eb5=622.25, and F5=698.46 Hz. With prior knowledge about the

signal, one recognizes the played notes (the second octave requires intonation

adjustment on the alto sax; the author unfortunately intonated about 8 Hz too high

for F5). Likewise, one sees a whole series of resonating overtones (octaves and fifths

upward), but also subharmonic frequencies (F3, C4, Eb4) and a broad spectrum of
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Fig. 12.22 8820-point DFT in 4s with piano and saxophone

admixtures due to the instrument characteristics and DFT aliasing effects. Imagine

the spectrum of a whole orchestra or a band with drums, guitar, bass, and brass

section, and consider what a well-trained ear can distinguish while enjoying music.

12.7 Initial Value Problems for Stable LTI Systems

In Sect. 9.2 we discussed causal initial value problems for differential equations of

the form P(D)u = Q(D)f . with polynomials P and Q for t ≥ 0. and distributional

right-hand sides f ∈ D�+ .. Such problems occur in time-invariant linear transmission

systems that have energy storage elements charged at the initial time t = 0.. The

correspondences of the Fourier transform of rational functions on p. 298 show that

such problems can also be solved using the Fourier transform if f belongs to the

space S �+ ., i.e., f ∈ S �
. and supp(f )⊂ [0,∞[., and if further the polynomials Q and

P do not have common linear factors and all poles of Q/P . have negative real parts.

Example We will once again treat the RLC oscillating circuit from Example 3 on

p. 230 as an example. The differential equation

.
..

Ua + 2√
LC

.
Ua + 1

LC
Ua = U1

.
δ and Ua(0−) = U0 ,

.
Ua(0−) = 0

described the oscillating circuit at critical damping (R2 = 4L/C .) with input voltage

Ue(t) = U1s(t). and given initial values. The solution is the voltage progression

across the inductance. The homogeneous differential equation is asymptotically

stable and the right-hand side is tempered. As in Sect. 9.2, we are interested in the

solution from the initial time t = 0. onward, excluding the past t < 0..

The unique solution T ∈ S �
. with supp(T ) ⊂ [0,∞[. is obtained according to the

theorem on p. 223 from the distributional equation

.
..
T + 2√

LC

.
T + 1

LC
T = U1

.
δ + 2U0√

LC
δ + U0

.
δ.
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Since under the given conditions 1/P . has only poles with negative real parts and

hence 1/P (jω). is a multiplier in S �
., Fourier transform of this equation and solving

for �T . give

.�T (ω) = 1

P(jω)

�
(U1 + U0)jω + 2U0√

LC

�
.

The inverse Fourier transform of the partial fractions using the correspondences

from p. 298, left as an exercise for the reader, then yields the same solution T

with support in [0,∞[. as on p. 231. Here, as there, s(t). denotes the Heaviside step

function.

.T (t) =
�

U0 + U1 + (U0 − U1)t√
LC

�
e−t/

√
LC s(t).

For the solution method shown, the condition that all poles of Q/P . have negative

real parts is not sufficient if Q and P have common linear factors with zeros whose

real part r ≥ 0.. We consider the following example.

Example The causal time-invariant system on S �+ ., described by the differential

equation

.P(D)u = ..
u + .

u − 2u = ..
f + 2

.
f − 3f = Q(D)f,

is stable with vanishing initial values. It has the impulse response

.h(t) = δ(t) + e−2t s(t)

and the frequency response �h(ω) = jω + 3

jω + 2
.. The general solution of the homoge-

neous equation P(D)u = 0. is uH (t) = k1 et +k2 e−2t
. with k1, k2 ∈ R.. The solution

uH . is not tempered, and for nonvanishing initial values c0, c1 . the corresponding

causal initial value problem (cf. p. 223)

.
..
u + .

u − 2u = ..
f + 2

.
f − 3f + (c0 + c1)δ + c0

.
δ

in S �+ . cannot generally be solved by Fourier transform. The reason is that with

vanishing initial values the common linear factors compensate at the zero z = 1.

of P and Q, while with nonvanishing initial values and proceeding as above, a

noncausal solution is obtained.

How initial value problems for certain partial differential equations can also be

solved using the Fourier transform is shown in the following section.
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12.8 Initial Value Problems for 3D Wave and Heat Equations

In previous sections, we solved some boundary value problems for the wave and heat

equations using Fourier series. As an application of the Fourier transform, we now

obtain solutions of initial value problems for wave and heat equations in unbounded

space. Because the Fourier transform converts differentiation into a simple algebraic

multiplication operation, it transforms the respective partial differential equations

into easily solvable ordinary differential equations.

The Initial Value Problem for the 3D Homogeneous Wave
Equation

The homogeneous wave equation describes, for example, the propagation of small

disturbances in frictionless, compressible fluids or gases in the absence of external

forces. In homogeneous unbounded isotropic space, the corresponding initial value

problem in Cartesian coordinates is given for u : R3 × [0,∞[→ R. by

.
∂2u

∂t2
(x, t) = c2Δxu(x, t),

u(x, 0) = f (x),
∂u

∂t
(x, 0+) = g(x), u(x, t) = 0 for t < 0. (12.5)

Here, x ∈ R3
. and Δx . is the Laplace operator related to the spatial parameters. If

the equation describes, for instance, sound propagation, then u(x, t). is the pressure

deviation at time t from the normal atmospheric pressure at location x.. The solution

u depends on the initial conditions, which we assume to be in S(R3)..

The Fourier transform of the equations with respect to the spatial coordinates

gives, by interchanging the Fourier integral with differentiation in t ,

.
∂2�u
∂t2

(ω, t) = ∂2

∂t2

ˆ

R3

u(x, t) e−jω·x dλ3(x) = c2

ˆ

R3

Δxu(x, t) e−jω·x dλ3(x)

= −c2|ω|2�u(ω, t), �u(ω, 0) = �f (ω),
∂�u
∂t

(ω, 0+) = �g(ω). (12.6)

For each fixed ω ., this is an initial value problem for an ordinary differential equation

in t . We impose the condition �u(ω, t) = 0. for t < 0.. Then we have with the unit

step s(t). the unique solution (cf. Theorem 9.5)

.�u(ω, t) =
�

�f (ω) cos(ct |ω|) + �g(ω)
sin(ct |ω|)

c|ω|
�

s(t).
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Since cos(ct |ω|) = d

dt

sin(ct |ω|)
c|ω| ., it is sufficient to determine the inverse Fourier

transform of
sin(ct |ω|)

c|ω| .. We already did this on p. 316 and obtain for t > 0.:

.
1

4πc2t
δ(|x| − ct)

sin(ct |ω|)
c|ω| . (12.7)

δ(|x|−ct). is the singular distribution given by the integral over the spherical surface

|x| = ct .. By the convolution theorem, we obtain u referred to as a wave. Since the

Fourier transform is one to one, this u is a unique solution of (12.5).

Theorem 12.7 The initial value problem (12.5) for the wave equation in space has

for x ∈ R3
. and t > 0. the solution

.u(x, t) = ∂

∂t

1

4πc2t

ˆ

|y|=ct

f (x − y) do(y) + 1

4πc2t

ˆ

|y|=ct

g(x − y) do(y)

= ∂

∂t

t

4π

ˆ

|n|=1

f (x + ctn) do(n) + t

4π

ˆ

|n|=1

g(x + ctn) do(n). (12.8)

For the integral transformation see p. 498. The assumptions on the initial condi-

tions can be relaxed. If f is three times and g is twice continuously differentiable,

it results in a classical solution u that is twice continuously differentiable. The

interchange of differentiations and integrals made in (12.6) is allowed. The solution

formula (12.8) shows that initial disturbances spread through space over time and

that with initial conditions f and g in S(R3). or those with bounded supports, the

solution u decays at least as fast as 1/t . for increasing times t . The solution u(x, t).

at a point x. depends at time t only on the values of the initial conditions on the

spherical surface around x. with radius ct . We also observe that δ(|x| − ct)/(4πc2t).

is a fundamental solution for inhomogeneous problems.

Propagation of Local Disturbances A spatially bounded initial disturbance leads

to a time-limited effect in wave propagation in space.

To explain this, we consider an initial disturbance whose support is a bounded set

U with the boundary surface ∂U .. Then f (x) = g(x) = 0. outside of U . Specifically,

imagine a sound that is generated in U at time t = 0.. Now, let x. be a point outside

of U and d and D be the minimum and maximum distances between x. and the

points of U , respectively. For t < d/c., the sphere Sct (x). around x. with radius ct lies

outside of U , f and g are zero there, and it follows that u(x, t) = 0. for t < d/c..

For t = d/c., Sct (x). touches the set U , the wave reaches x.: For times t between

d/c. and D/c., Sct (x). and U intersect, at x. effects u(x, t) �= 0. can occur. For times

t > D/c., U lies within the sphere Sct (x)., and it follows again that u(x, t) = 0., i.e.,

the disturbance has passed x.. Therefore, at x. an effect u(x, t) �= 0. is noticeable only
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Fig. 12.23 Illustration of

wave propagation in space

Fig. 12.24 Illustration of

wave propagation and

Huygens’ principle

in the time interval d/c ≤ t ≤ D/c.. There is a primary and a secondary wavefront.

At a given time t , the primary wavefront takes the form of a surface that separates

those points that have not yet been reached by the wave from the points where the

disturbance is acting or has already acted. The points of this surface have a distance

ct from the boundary ∂U . of U and thus lie on the envelope of all spheres with

centers on ∂U . and radii ct (Huygens’ principle). Similarly, the secondary wavefront

separates those points that are no longer affected by the disturbance from all others.

The constant c is the finite propagation speed of the wavefronts. As illustrations

consider Figs. 12.23 and 12.24.

It is therefore possible to transmit signals as sharply bounded waves in three-

dimensional space, whose support has a spherical or shell-like shape. This is an

extremely significant fact for communication transmission.

The second Fig. 12.24 illustrates a radial wave emitted by a sine source

A sin(ωt)s(t). at the origin. It shows the spatially decreasing amplitudes (for

example air pressure or electric field strength) in the plane 0 < x = ct < 60, |y| ≤
30, z = 0. for values ≥ 0.. The used data are A = 1,ω = π/2, c = 2. with their

according physical units. Shown is u(x, y, 0, 20). at t = 20., when the wave has

not yet reached x > 40.. Huygens’ principle: The wavefront can be seen as the

envelope of the wavefronts by sources of the same type, but starting at different

places and times before t =20. with the correspondingly decreased amplitudes (blue,

green in the figure for two such waves).

For the solution of the inhomogeneous wave equation � u = 1

c2
∂2
t u − Δxu =

f ., see Exercise A7. There we use the Lorentz gauge so that for an electric scalar

potential u we have � u = �/ε0 . with the D’Alembert operator �.. The result is

the so-called retarded potential. The distribution g1(x, t) = δ(|x| − ct)/(4πc2t).

in (12.7) is a fundamental solution of Eq. (12.5). Thus, it has to be multiplied by
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c2
. to obtain a fundamental solution g for the D’Alembert operator �.. With a twice

continuously differentiable source f , which is zero for t < 0., the retarded solution

f ∗ g . of � u = f . is also zero for t < 0., twice continuously differentiable, and

can be written as integral (see also (9.4), p. 235. For the integrals, see p. 497 and

Exercise A7)

.u(x, t) = f ∗ δ(|x| − ct)

4π t
= c2

t
ˆ

−∞

(t − s)2

4π

ˆ

|n|=1

f (x + c(t − s)n, s)

t − s
do (n) ds

=
ˆ

R3

f (y, t − |x − y|
c

)

4π |x − y| dλ3(y) = f ∗
δ(t − |x|

c
)

4π |x| . (12.9)

The equations express mathematically precisely the Huygens principle

(Fig. 12.24).

The Initial Value Problem for the 2D Homogeneous Wave
Equation

The wave equation in the plane describes problems where the initial conditions f

and g depend only on two spatial coordinates. We consider functions f that are

three times continuously differentiable and functions g that are twice continuously

differentiable, which depend on x = (x1, x2, x3). only on x1 . and x2 ., interpret the

corresponding initial value problem (12.5) in the plane as a spatial problem with the

symmetry axis x1 = x2 = 0., and use its already known solution (12.8):

We calculate the surface integrals in (12.8) by setting ϕ = f . or ϕ = g . and

integrating using spherical coordinates. Then for x = (x1, x2, x3). and functions

ϕ(x) = ϕ(x1, x2). independent of x3 . we have

.

ˆ

|n|=1

ϕ(x+ctn) do(n) =
2π
ˆ

0

ˆ π

0

ϕ(x1+ct sin θ cos φ, x2+ct sin θ sin φ) sin θ dθ dφ.

We integrate over the upper and lower hemisphere surfaces separately, that is, we

divide the integration range of the inner integral at π/2. into two subintervals. Using

the substitution θ = arcsin r ., dθ = (1 − r2)−1/2 dr ., it follows

.

π/2
´

0

ϕ(x1 + ct sin θ cos φ, x2 + ct sin θ sin φ) sin θ dθ
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=
1́

0

ϕ(x1 + ctr cos φ, x2 + ctr sin φ)√
1 − r2

r dr.

For the second subintegral from π/2. to π ., one obtains the same result. Substituting

into the surface integral then gives for x = (x1, x2, x3).

.

ˆ

|n|=1

ϕ(x + ctn) do(n) = 2

2π
ˆ

0

ˆ 1

0

ϕ(x1 + ctr cos φ, x2 + ctr sin φ)√
1 − r2

r dr dφ.

This is an integral independent of x3 . over the unit disk in the x1x2 .-plane. So if f

and g for x = (x1, x2, x3). depend only on the first two coordinates, then the solution

of the initial value problem (12.5) is also independent of x3 .. Because the integrands

are independent of the height x3 ., the surface integrals in (12.8) can be expressed as

two identical integrals over the unit disk in the plane x3 = 0.. Thus, we obtain the

solution of the initial value problem (12.5) for planar problems and those with the

symmetry axis x1 = x2 = 0..

Theorem 12.8 The initial value problem (12.5) for the wave equation in the plane

has the solution for x = (x1, x2) ∈ R2
. and t > 0.

.u(x, t) = ∂

∂t

t

2π

ˆ

|y|≤1

f (x + cty)�
1 − |y|2 dλ2(y) + t

2π

ˆ

|y|≤1

g(x + cty)�
1 − |y|2 dλ2(y).

(12.10)

For three-dimensional problems with the symmetry axis x1 = x2 = 0., the solution

at time t > 0. at a point z = (x1, x2, x3) = (x, x3). with u(z, t) = u(x, t). is also

given by formula (12.10).

Propagation of Local Disturbances For the initial value problem of the wave

equation in the plane, an initial disturbance bounded in space at any point leads

to a timely unlimited effect.

The solution u at a point x = (x1, x2). in the plane depends at time t > 0. on

the values of the initial conditions in the entire disk around x. with radius ct . Local

disturbances in the plane propagate with the speed c and then continuously affect

points once reached by the wave. For example, if you place an autumn leaf on a

still water surface and throw a stone into the water, the outgoing wave will reach

the leaf and continue to spread. The leaf will continue to sway long after it has been

passed by the propagation front. This may provide an illustration of the situation,

even though water waves are only very roughly described by the two-dimensional

wave equation (12.5). The difference to the previously discussed propagation of

spatially local disturbances is easily understood when the planar problem is viewed

as a three-dimensional problem with the symmetry axis x1 = x2 = 0.. An initial

condition with bounded support in the plane corresponds to a disturbance whose
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support is an infinitely extended cylinder in space. Even at arbitrarily large times, a

point (x1, x2). in the plane will be reached by disturbances from great heights x3 ..

The Initial Value Problem for the Homogeneous Heat Equation

The initial value problem for the homogeneous heat equation in homogeneous

unbounded isotropic space is given for u : Rp × [0,∞[→ R. by

.
∂u

∂t
(x, t) = kΔxu(x, t) , u(x, 0) = f (x). (12.11)

Here, u(x, t). is the absolute temperature at a location x ∈ Rp
. at time t ≥ 0.. The

spatial dimension p is arbitrary. The constant k > 0. is the thermal diffusivity. As

with the wave equation, we initially assume the initial temperature f ≥ 0. to be a

smooth, rapidly decreasing function and obtain with the Fourier transform of the

equations in (12.11) with respect to the spatial coordinates the ordinary differential

equation

.
∂�u
∂t

(ω, t) = −k|ω|2�u(ω, t) , �u(ω, 0) = �f (ω).

Imposing �u = 0. for t < 0. its unique solution is �u(ω, t) =
�

�f (ω) e−k|ω|2t
�

s(t)..

With the inverse Fourier transform Kt(x) = (4πkt)−p/2 e−|x|2/(4kt)
. of e−k|ω|2t for

t > 0., the solution of (12.11) follows by convolution of f with Kt ..

Theorem 12.9 The initial value problem (12.11) for the homogeneous heat equa-

tion has for x ∈ Rp
. and t > 0. the solution

.u(x, t) = (4πkt)−p/2

ˆ

Rp

f (y) e−|x−y|2/(4kt) dλp(y). (12.12)

Due to the rapid decay of the heat kernel Kt(x)., a smooth solution still results

for initial conditions f ∈ S �(Rp).. It can be proven (cf. for example John (1981))

that for f ≥ 0., the solution u in (12.12) is the unique nonnegative solution of the

heat problem (12.11). If until time t = 0. the temperature is zero everywhere and

at a location y. at time t = 0. the temperature f (y). is produced, then the density

function f (y)Kt (x − y). describes the temperature in x. at time t produced at y.. The

heat kernel thus shows the equalization of temperature spatially and temporally, the

convolution integral (12.12), and the superposition of the influences that act in x. at

time t by the initial temperatures of all spatial points y..

Inhomogeneous initial value problems for wave and heat equations in space can

also be solved using the Fourier method. For this, one has to determine fundamental
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solutions of the equations. For the heat equation, this is posed as Exercise A6,

for the 3D wave equation as Exercise A7, and for the Schrödinger equation as

Exercise A8 at the end of the chapter. For the 3D potential equation, we have

already derived a fundamental solution on p. 234, in the 2D case in Exercise A7

of Chap. 9. Fundamental solutions to other problems can be found, for example, in

Triebel (1992), Folland (1995), Hörmander (2003), and Ortner and Wagner (2015).

Inhomogeneous Boundary Value Problems for the Heat
Equation

In applied numerical mathematics, inhomogeneous heat equations with various

initial and boundary conditions for complex 3D regions can approximately be solved

with the Finite Element Method as introduced in Sect. 9.5. If the problems are

time dependent, one can also use it, when solutions are calculated in progressive

discrete time steps. For theory on the (distributional) solutions for such problems,

it is referred to the extensive literature about partial differential equations and FEM

methods, for example, to Dautray and Lions (1992).

As an example, the temperature distribution in a pump casing is shown, computed

with Elmer FEM (see https://research.csc.fi/web/elmer). I have chosen this example

because interested readers can easily reproduce it themselves, as the software and

the data can be downloaded free of charge from the Elmer homepage. There can be

found other examples too. Figure 12.25 shows the used mesh.

Fig. 12.25 3D-FEM model of a pump casing with the used mesh
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Fig. 12.26 Temperature in the pump casing generated during operation

Heat is being generated internally in the casing during operation and being cooled

at parts of the upper boundary, providing a steady-state temperature. Thus, no initial

conditions were needed. Figure 12.26 shows the approximate FEM solution. It is

not differentiable and can only be understood as a weak solution in an appropriate

Sobolev space (cf. p. 245). In the image, the surface of the model is smoothed. The

solver needed 9 s on my old notebook to compute the solution.

The following input data have been used:

1. The model has 181214 volume elements and 58761 edge elements.

2. The material is assumed to be aluminum.

3. During operation the pump is cooled to 293K on parts of the upper surface.

4. The inner heat source is assumed to be constant 0.017 W/kg. The temperature

scale is given in degrees Kelvin, i.e., 293K = 19.85◦
.C = 67.73◦

.F.

12.9 Exercises

(A1) Assume that a function f ∈ L2(R). satisfies the conditions of the sampling

theorem of p. 384 with �f (ω) = 0. for |ω| > ωc .. Furthermore, let α > 1.:

(a) Show that for |ω| ≤ αωc . the following holds:
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. �f (ω) = π

αωc

+∞�

k=−∞
f

�
kπ

αωc

�
e−jkπω/(αωc) .

(b) Let �wα . be a spectral window function whose graph sketched below:

Show that wα(t) = cos(ωct) − cos(αωct)

π(α − 1)ωct2
. holds.

(c) It holds that �f = �wα
�f .. Using this, show the sampling formula

.f (t) = π

αωc

+∞�

k=−∞
f

�
kπ

αωc

�
wα

�
t − kπ

αωc

�
,

i.e., a sampling formula with oversampling, in which the basis functions

wα(t). decay like 1/t2
. for |t | → ∞. (cf. Remark 2 on p. 386).

(A2) Plot the graph of an approximation for | �f |. with the help of a computer alge-

bra system, �f . being the windowed Fourier transform of f (t) = sin(40π t2).,

0 ≤ t ≤ 10.. Use the Hann window from the example on p. 411.

(A3) What is the effective bandwidth of the Hann window wT . used in Sects. 12.5

and 12.6?

.wT (t) =
�

0.5 − 0.5 cos(2π t/T ) for 0 ≤ t ≤ T

0 otherwise.

(A4) What is the formula corresponding to Eq. (12.4) from p. 420 for the window

function

.wT (t) =
�

1 − 2|t − T/2|/T for 0 ≤ t ≤ T

0 otherwise
?

With what weights does the spectral leakage effect impact a discrete Fourier

transform performed with the triangle window?

(A5) Solve the following causal initial value problem for t ≥ 0. using the Fourier

transform as in Sect. 12.7:

.x(3)(t) + 4x��(t) + 6x�(t) + 4x(t) = sin(t)s(t) + δ(t)
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with the unit step function s(t). under the following initial conditions:

.x(0−) = 1, x�(0−) = 2 and x��(0−) = 1.

Determine the right-sided limits x(0+)., x�(0+)., x��(0+). of the solution.

(A6)� . (a) Determine the fundamental solution g of the heat equation with

.g(x, t) = 0 for t < 0

∂

∂t
g(x, t) − kΔxg(x, t) = δ(x) ⊗ δ(t).

(b) Show that the inhomogeneous heat equation

.
∂u

∂t
(x, t) = kΔxu(x, t) + F(x, t) , u(x, 0) = 0, F (x, t) = 0 if t < 0

for x ∈ R3
., t > 0., and F such that the convolution integral exists, is

solved by

.u(x, t) =
t
ˆ

0

ˆ

R3
Ks(y)F (x − y, t − s) dλ3(y) ds,

Ks(y) = (4πks)−3/2 e−|y|2/(4ks)
. being the kernel of the homogeneous

equation. Give a sufficient condition for F such that the above convolu-

tion integral exists.

(c) Solve the corresponding problem for u(x, 0) = f (x) ≥ 0,. f ∈ S(R3)..

(A7)� . Verify the fundamental solution g with g(x, t) = 0. for t < 0. of the

inhomogeneous wave equation � u = f . and the integral transformations

in Eq. (12.9). Specify the solution of � u = f . for a time-varying source f

in the origin, e.g., f (x, t) = A sin(ωt)s(t) ⊗ δ(x).. Again s(t). denotes the

unit step function.

Remark The distribution g is called the retarded fundamental solution. In

electrodynamics an inhomogeneity F for the wave equation can be a time-

varying electric charge density or current density. The field F ∗ g . is called

the retarded potential, signifying the fact that the observed field is retarded

at an observation position x., i.e., delayed in time by Δt = |x − x�|/c. relative

to a source variation at x�
. due to the finite speed c of wave propagation.

The distribution �g . defined by �g(x, t) = g(x,−t). is called the advanced

fundamental solution and F ∗ �g . the advanced potential accordingly. For a

discussion of advanced potentials, see the literature on electrodynamics, e.g.,

the Feynman Lectures on Physics, which are available online from Caltech

websites.
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(A8)� . The Schrödinger equation

.
∂ψ

∂t
(x, t) = j

h̄

2m
Δxψ(x, t)

describes in nonrelativistic quantum mechanics the wave function ψ of a free

particle of mass m in the absence of external forces. Solve this equation for

t > 0. with the initial condition ψ(x, 0) = ψ0(x) ∈ S(R3)..


