

 Rolf Brigola

 Fourier Analysis with Mathematica 1

 Learning Fourier Series by Examples

 (2nd extended edition)

Prof. Dr. Rolf Brigola

Technische Hochschule Nürnberg Georg-Simon-Ohm

Fakultät Angewandte Mathematik, Physik und Allgemeinwissenschaften

Keßlerplatz 12, 90489 Nürnberg

© Rolf Brigola, 2025

All rights reserved

Imprint: Independently published

Mathematics Subject Classification (2010): 42-01

The graphics on the cover shows Halley's Comet, its orbit as calculated in

the text, and in yellow the distance traveled within 2 years starting from

aphelion. The picture is from NASA ID LSPN-1725.

Top left is a trigonometric polynomial illustrated as a circular wave, in the

center a solution of the 1D wave equation for a finite string with a smooth

initial condition and homogeneous boundary values, and top right an

amplitude modulation of a trigonometric polynomial.

Preface

Fourier series are fundamental mathematical tools for describing and

solving a wide array of technical and scientific problems. These include

areas of physics, mechanical engineering, electrical engineering, and

signal and control theory. This text is intended for readers seeking to

understand the theoretical foundation of Fourier analysis methods, and

their practical applications.

Students of mathematics or engineering learn the basics on Fourier series

representations of periodic functions in their early math courses.

Nowadays, Fourier series build the mathematical foundation of a myriad

of applications that largely permeate our everyday lives, from basic

electrical engineering, medicine and chemistry to modern signal

processing in communication devices and computational mathematics in

any scientific application areas.

The text incorporates insights from many years of lectures delivered to

students of applied mathematics, physics, electrical engineering, and

communications engineering at the Technische Hochschule Nürnberg

Georg Simon Ohm, starting in their second semester.

This booklet has its focus on showing how theoretical results on Fourier

series can be used in applications and examples with the help of the

computeralgebra system Mathematica. Thus, no proofs of used

theorems and properties of Fourier series are given in the text. Instead, it

is demonstrated how to comprehend properties and applications of

Fourier series with the help of Mathematica, which frees us from time-

consuming own calculations and gives us the opportunity to understand

the subject matter with clear illustrations.

In the present 2nd edition of this text, I have corrected a few typos,

have (hopefully) improved some explanations and have added a new

section on a Ritz-Galerkin solution for a Dirichlet boundary value

problem on a rectangle. Due to the simple shape of the region, a Ritz-

Galerkin solution with Fourier series is possible. The principle is

already a preparation for solutions on more complicated regions by the

Finite Element method (FEM). This shall be a topic with regard to

distribution theory in a subsequent booklet, which is in progress.

The extended theory of Fourier transforms has its main success in

connection with distribution theory. Typical applications with the

help of Mathematica will be treated in a future booklet on Fourier

Analysis with Mathematica 2.

For the theory with proofs of the theorems and detailed examples,

exercises and their solutions it is referred to the authors textbook

Fourier Analysis with Distributions

A First Course with Applications

Springer, Text in Applied Mathematics 79, 2025

Rolf Brigola

Nürnberg, Germany, 2025

https://link.springer.com/book/10.1007/978-3-031-81311-5?sap-outbound-id=8AB8B454F0CD313E3958F5E2D2C1906274DE3E6E&utm_source=standard&utm_medium=email&utm_campaign=000_LAN36_0000019083_Book+author+congrats+NEW&utm_content=EN_34155_20250412&mkt-key=5588F17DFAB21FE085970932ABCA98B4

Contents

1 Basics on Fourier Series with Mathematica 1

 1.1 Dirichlet and Fejér Kernels 3

Dirichlet Kernels

The Fourier Series of the Sawtooth

Fejér kernels, Smoothing, Gibbs Phenomenon

 1.2 Properties of Fourier Series 9

Translations of a Signal

Amplitude Modulation, Translation of the Spectrum

Smoothness and Magnitude of the Spectrum

Uniform Convergence of Fourier Series

Fourier Series of Derivatives and Integrals

 1.3 Orthogonal Projections into Finite-Dimensional

Subspaces of L2([a, b])

19

Approximation by Legendre polynomials

 1.4 Convergent Trigonometric Series, which are not

Classical Fourier Series

24

 1.5 Graphical Illustrations of Trigonometric Polynomials 25

2 Application of Fourier Series to Linear

Differential Equations

29

 2.1 Ordinary Linear Differential Equations with

Constant Coefficients

 29

Forced periodic oscillations of a mass on a spring

 2.2 Fourier series in homogeneous 1D Heat Equations 34

 2.3 Fourier Series in inhomogeneous 1D Heat Equations 42

 2.4 Fourier Series Solution for the Potential Equation

on a Circular Disk

 45

 2.5 Initial Boundary Value Problem for a Force-Free

Vibrating String

 47

 2.6 Solution of a Kepler Equation by Fourier Series Expansion 50

 2.7 Solving a 2D Poisson Equation for a Rectangular

Membrane by a Ritz-Galerkin Solution

 53

3 Discrete Fourier Transforms 61

 3.1 Fundamentals on the DFT 61

DFT and Frequency Assignment, Handling of Alias Effects

Subsampling in digital transmission systems

Delayed Sampling

Correction in the Spectrum of Trigonometric Polynomials

 3.2 Estimation of Signal Spectra, Aliasing 70

 3.3 Leakage, Time Windows 74

 3.4 Inverse Discrete Fourier Transform IDFT, Interpolation 78

 3.5 DFT, IDFT and Time Windows in Digital Signal

Processing

 83

WLAN Transmission, Spectrograms

 3.6 The Discrete Cosine Transforms DCT I and DCT II 94

 3.7 Interpolation with the DCT I and DCT II 96

 3.8 Numerical Integration, Clenshaw-Curtis Quadrature 99

 3.9 The DCT in Interpolation with Chebyshev Polynomials 102

Chebyshev Polynomials of the first kind

Chebyshev Polynomials as an orthogonal system

Comparison with interpolation by Legendre polynomials

Connection with DCT I and DCT II, Example of C. Runge

The Alias Effect with Chebyshev Polynomials

An Extremal Property of the Chebyshev Polynomials

4 The DCT 2D, JPEG, Huffman Code 117

 4.1 DCT 2D, JPEG 117

 4.2 Huffman Coding 125

Rolf Brigola

Fourier Analysis with Mathematica 1

Learning Fourier Series by Examples

1 Basics on Fourier Series with Mathematica

Fourier analysis dates back to the ideas of Daniel Bernoulli (1700-1782) and French mathe -

matician Jean-Baptiste Joseph Fourier (1768-1830).

Historically, it started with the represention of solutions for heat and wave equations as

superpositions of trigonometric functions. Students of mathematics or engineering learn the

basics on Fourier series representations of periodic functions in their early math courses. In

more advanced studies, Fourier analysis is developed to describe and solve a wide variety of

problems in mathematics, natural sciences and engineering. Nowadays, it builds the mathe -

matical foundation of a myriad of applications that largely permeate our everyday lives,

from basic electrical engineering, medicine and chemistry to modern signal processing in

communication devices and computational mathematics in any scientific application areas.

The presented text here and in subsequent parts is tailored to show how certain types of

linear problems can be solved with the help of Fourier Analysis and its application with

Mathematica. For the theoretical background, the definitions, the theorems and their proofs

I refer to my textbook as [1]

Rolf Brigola (2025) Fourier Analysis and Distributions, A First Course with Applications,

Springer's TAM series, Vol. 79.

Thus, in a certain sense, this book can be understood as a supplement for the above, show -

ing how one possibly can avoid some boring own calculations, how to solve treated prob -

lems and how to generate illustrative graphics with the help of Mathematica or an equiva -

lent computer algebra system.

We start with Fourier series and some of their applications. In subsequent booklets we treat

distributions, the Fourier transform and applications like linear filter design, sampling and

more. This volume is related to the chapters 1-7 of my above indicated textbook. The aim is

to first introduce and remind users of some basics about Fourier series with the help of

Mathematica. It will show Mathematica commands that can be used to calculate Fourier

series and to generate graphics to illustrate the facts. Typical application examples of Fourier

Series are shown, which demonstrate the benefits of Fourier analysis for approximation

tasks and signal processing. Subsequently, we will look at the DFT, DCT and Chebyshev

polynomials and some of their typical properties that are relevant for applications.

https://www.amazon.de/Fourier-Analysis-Distributions-Applications-Mathematics/dp/3031813103/ref=sr_1_2?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=I57AFX8NIZ9E&dib=eyJ2IjoiMSJ9.EVyJBuIi0mk8ftjDmtbfPpYdGQijsttZ3kLr5ecyuzyENhQAGXezcx5vN595No-PEnVvYRQrviHOZHYKoMlMVjm9JSfu6l8nX3Ws9itlpXw.aUyJ7HOeLTaNG-F6hEeYRzQX3CuJL8sBBZI4ndwwe2s&dib_tag=se&keywords=Rolf+Brigola&qid=1738408368&s=books&sprefix=rolf+brigola%2Cstripbooks%2C132&sr=1-2
https://www.amazon.de/Fourier-Analysis-Distributions-Applications-Mathematics/dp/3031813103/ref=sr_1_2?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=I57AFX8NIZ9E&dib=eyJ2IjoiMSJ9.EVyJBuIi0mk8ftjDmtbfPpYdGQijsttZ3kLr5ecyuzyENhQAGXezcx5vN595No-PEnVvYRQrviHOZHYKoMlMVjm9JSfu6l8nX3Ws9itlpXw.aUyJ7HOeLTaNG-F6hEeYRzQX3CuJL8sBBZI4ndwwe2s&dib_tag=se&keywords=Rolf+Brigola&qid=1738408368&s=books&sprefix=rolf+brigola%2Cstripbooks%2C132&sr=1-2

Author's note: I am not really an expert on the almost inexhaustible possibilities offered by a

really practiced, in-depth use of Mathematica. I have therefore essentially tried to illustrate

the mathematical material with this offer and to show how the content covered can be

accessed with Mathematica instructions (some of which are probably often too complicated,

but also transparent for Mathematica beginners). I trust that readers will become familiar

with Mathematica commands and options (especially with the numerous possible graphics

options) by inspecting the given examples and using analog versions in own examples.

With regard to many application examples in the text, I often call the variable of Fourier

series a “time” parameter. Of course it changes its meaning depending on the specific appli -

cation examples from physics or other fields. For the mathematics, this makes no difference.

Details on all Mathematica commands and options can easily be found by the online help

system of Mathematica. For certain aspects of Mathematica such as programming one can

also easily find tutorials and other sources by searching the internet. The contents were all

written with Mathematica. The examples can also be treated with corresponding commands

in other computer algebra or numerical systems like Maple, Matlab et al.

2 Fourier Analysis with Mathematica 1

1.1 Dirichlet and Fej ér Kernels

Dirichlet kernels and Fejér kernels play a fundamental role in the study of Fourier series.

Partial sums of Fourier series of periodic functions are convolutions with Dirichlet kernels

(cf. the above mentioned book, chapter 3, 4 and chapter 7).

At first I define some functions. Here I use two functions for calculating Fourier coefficients

and Fourier expansions for periodic functions defined on an interval [a,b] with period (b-a).

The reason is that Mathematica offers only the respective commands for periodic functions

defined on a symmetric interval around zero (see below). One can save own functions in an

m-file and load this at the beginning of a notebook to have them available.

 Defining of own functions for Fourier coefficients and expansion:

In[]:= fourcoeffc [f_, A_, B_, k_] :=

1 / (B - A) Integrate [f[t] Exp[- I k t 2 Pi / (B - A)], {t, A, B}]

(* Calculate the k-th complex Fourier coeff . *)

fourpolynomial [f_, A_, B_, n_] :=

FullSimplify [Refine [Sum[fourcoeffc [f , A, B, k] Exp[I k t 2 Pi / (B - A)], {k, -n, n}],

{Element [k, Integers]}]]

(* Calculate the fourier expansion as trig. polynomials up to degree n *)

b[k_, A_, B_] := FullSimplify [I (fourcoeffc [f , A, B, k] - fourcoeffc [f , A, B, -k])]

(* Sin-coeff b_k *)

a[k_, A_, B_] := FullSimplify [(fourcoeffc [f , A, B, k] + fourcoeffc [f , A, B, -k])]

(* Cos-coeff a_k *)

1. Dirichlet Kernels

We consider the 2π - periodic Dirichlet kernel Dir[t, N] of degree N≥1 :

In[]:= Dir[t_, N_] = Simplify [1 + 2 Sum[Cos[k t], {k, 1, N}]]

Out[]= 1 + 2 Cos 1

2
× (1 + N) t Csc t

2
 SinN t

2


In a trigonometric form

In[]:= TrigToExp [%]

Out[]= 1 +

ⅇ-
1

2
ⅈ N t

- ⅇ ⅈ N t

2  ⅇ-
1

2
ⅈ (1+N) t

+ ⅇ 1

2
ⅈ (1+N) t

ⅇ-
ⅈ t
2 - ⅇ ⅈ t

2

Chapter1 Basics on Fourier Series 3

Example 1. As illustration the Dirichlet kernels of degrees 3 and 6 are shown. They oscillate

more and more with increasing degrees N. At no point exists a limit for N -> ∞.

In[]:= g1 := Plot[Dir[t, 3], {t, - 2 Pi, 2 Pi}, PlotStyle → Directive [

Red, Thickness [0.006]], PlotRange → All, PlotLabels → Style["Dir[t,3]", 14]]

g2 := Plot[Dir[t, 6], {t, - 2 Pi, 2 Pi}, PlotStyle → Directive [

Blue, Thickness [0.006]], PlotRange → All, PlotLabels → Style["Dir[t,6]", 14]]

Show [g1, g2, ImageSize → Medium]

Out[]=

Dir[t,3]

Dir[t,6]

-6 -4 -2 2 4 6

5

10

We observe that a Dirichlet kernel of degree N has the maximum possible number of 2N

zeros per period.

Dirichlet kernels of other periods also have 2N zeros per period.

The mean values of the Dirichlet kernels over one period are one. Here as example:

In[]:= Integrate [Dir[t, 5], {t, 0, 2 Pi}] / (2 Pi)

Out[]= 1

4 Fourier Analysis with Mathematica 1

2. The Fourier Series of the Sawtooth

Example 2. As first periodic function we consider the 2π-periodic sawtooth in the time inter -

val from - 4π to 2π .

At first the section on [0, 2π] and then a plot over 3 periods. Afterwards the Fourier

expansion.

Mathematica offers an implemented procedure for that, but uses as standard 2π-periodic

functions, defined in the interval [- π , π]. Thus, we define the sawtooth as function in that

interval or use the above defined functions fourcoeffc and fourserc.

The command FourierTrigSeries gives the partial sum of the Fourier expansion with a num-

ber of upper harmonics.

The Gibbs Phenomenon at the discontinuity points is clearly recognizable in the plot

below. The overshoot near the discontinuity is about 9% of the jump height (see [1], 3.2).

In[]:= sawtooth [t_] = (Pi - t) / 2 (UnitStep [t] - UnitStep [t - 2 Pi])

p1 = Plot[Sum[sawtooth [t - k 2 Pi], {k, -4 , 2 }], {t, - 4 Pi, 2 Pi},

PlotStyle → Directive [RGBColor [0.127 , 0.121, 0.36], Thickness [0.01]],

PlotLabels → Style["sawtooth ", 14]];

f[t_] := sawtooth [t + 2 Pi] + sawtooth [t];

FSsawtooth [t_] = FourierTrigSeries [f[t], t, 7]

p2 := Plot[FSsawtooth [t], {t, -4 Pi, 2 Pi},

PlotStyle → Directive [Blue, Thickness [0.008]], PlotRange → All,

PlotLabels → Style["Gibbs Phenomenon ", 14], ImageSize → Medium];

p2a = Show [p1, p2, ImageSize → Medium];

Show [p2a]

Out[]=

1

2
(π- t) (UnitStep [t] - UnitStep [-2 π+ t])

Out[]= Sin[t] +
1

2
Sin[2 t] +

1

3
Sin[3 t] +

1

4
Sin[4 t] +

1

5
Sin[5 t] +

1

6
Sin[6 t] +

1

7
Sin[7 t]

sawtooth

Gibbs Phenomenon

-10 -5 5

-1.5

-1.0

-0.5

0.5

1.0

1.5

Now its Fourier expansion. Mathematica offers an implemented procedure for that, but uses

as standard periodic functions defined in a symmetric interval around zero.

Thus, we define the sawtooth as function in the interval [- π , π] or use the above defined

functions fourcoeffc and fourserc. The command FourierTrigSeries gives the partial sum of

the Fourier expansion with a number of upper harmonics.

The Gibbs Phenomenon at the discontinuity points is clearly recognizable in the plot.

Chapter1 Basics on Fourier Series 5

The same with the above defined functions integrating from -2π to 0.

In[]:= fourcoeffc [f , -2 Pi, 0, 5]

b[5, -2 Pi, 0]

h[t_] = fourpolynomial [f , -2 Pi, 0, 7]

Out[]= -
ⅈ

10

Out[]=

1

5

Out[]= (1 + Cos[t]) Sin[t] +
1

3
Sin[3 t] +

1

4
Sin[4 t] +

1

5
Sin[5 t] +

1

6
Sin[6 t] +

1

7
Sin[7 t]

Convolution is the key to understanding Fourier expansions:

Fourier series are obtained by convolutions of a function f with Dirichlet kernels, later with

Fejér kernels and other summation kernels.

In the last example, you obtain the same partial sum by the 2π-periodic convolution of the

sawtooth with the 2π-periodic Dirichlet kernel of degree 7 :

In[]:= convolution [t_] =

FullSimplify [1 / (2 Pi) Integrate [sawtooth [s] *Dir[t - s, 7], {s, 0, 2 Pi}]]

Out[]= (1 + Cos[t]) Sin[t] +
1

3
Sin[3 t] +

1

4
Sin[4 t] +

1

5
Sin[5 t] +

1

6
Sin[6 t] +

1

7
Sin[7 t]

Since Cos[t] Sin[t] = Sin[2 t]/2 , we see that this convolution is again the above partial sum of

the sawtooth.

3. Fejér kernels, Smoothing, and Vanishing of the Gibbs Phenomenon

The Fejér kernels are the arithmetic means of the Dirichlet kernels. We define the 2π-peri-

odic Fejér kernel Fej[t,N] of degree N-1 ⩾1 and plot it for degree 9.

Example 3. The graphics shows a Dirichlet kernel of degree 6 and a Fejér kernel of degree 9.

In[]:= Fej[t_, N_] = 1 /N × (1 + Sum[Dir[t, k], {k, 1, N - 1}])

g3 = Plot[Fej[t, 10], {t, -2 Pi, 2 Pi}, PlotStyle → Directive [

Red, Thickness [0.01]], PlotRange → All, PlotLabels → Style["Fej[t,10]", 14]];

Out[]=

1 +
1

2
-Csc t

2
2

Sin 1

2
(-π+ 2 t)+ Csc t

2
2

Sin 1

2
(-π+ 2 N t)

N

6 Fourier Analysis with Mathematica 1

In[]:= plot3a = Show [g2, g3]

Out[]=

Dir[t,6]

Fej[t,10]

-6 -4 -2 2 4 6

5

10

The Fejér kernels also have mean values one, but unlike the Dirichlet kernels are non-nega -

tive. In contrast to the Dirichlet kernels, they converge for growing N uniformly to zero in

every closed interval that does not contain any points of the form 2kπ . The trigonometric

polynomial with degree N for the Fejér kernel Fej[t,N+1] has N zeros per period. Here the

mean value of such a kernel:

In[]:= Integrate [Fej[t, 5], {t, 0, 2 Pi}] / (2 Pi)

Out[]= 1

Since there are continuous periodic functions whose Fourier series are divergent at infinitely

many points, it was an important result of L. Fejér in 1904 that the arithmetic means of the

partial sums of the Fourier series of a continuous periodic function f converge even uni-

formly towards f. (For the proof see [1], chapter 7.)

In addition, the Gibbs phenomenon no longer occurs when approximating functions with

jump points. Due to the lower weighting of high-frequency components the approximation

is smoothed and less wavy. The price for this is a larger error in the quadratic mean in com-

parison with an approximation using a partial sum of the Fourier series with the same

degree.

Equivalent to the formation of such arithmetic means is the periodic convolution with Fejér

kernels. We show this using the example of a partial sum of the sawtooth:

You can see that there is no Gibbs phenomenon with the approximation by Fejér means.

Chapter1 Basics on Fourier Series 7

Example 4. Blue the sawtooth, red the approximation with the Fejér averaging. For compari -

son at the right the plot of the periodic convolution of the sawtooth with our Fejér kernel

Fej[t,11] (The calculation takes some time, i.e., some patience is necessary. This calculation

is of course too complicated from a practical point of view if, as above, the resulting trigono -

metric polynomial can be specified directly.)

In[]:= f1[t_, N_] := Sum[(1 - k / (N + 1)) Sin[k t] / k, {k, 1, N}]

g4 := Plot[f1[t, 10], {t, -2 Pi, 2 Pi}, PlotStyle → Directive [

Red, Thickness [0.01]], PlotRange → All, PlotLabels → Style["f1[t,10]", 14]]

g5 := Plot[sawtooth [t + 2 Pi] + sawtooth [t], {t, -2 Pi, 2 Pi},

PlotStyle → Directive [Blue, Thickness [0.008]],

PlotRange → All, PlotLabels → Style["sawtooth ", 14]]

g5a = Show [g4, g5];

f2[t_, N_] := NIntegrate [sawtooth [s] × Fej[t - s, N], {s, 0, 2 Pi}] / (2 Pi)

g6 = Plot[f2[t, 11], {t, -2 Pi, 2 Pi}, PlotStyle → Directive [

Red, Thickness [0.01]], PlotRange → All, PlotLabels → Style["f2[t,11]", 14]];

GraphicsRow [{g5a, g6}]

Out[]= f1[t,10]

sawtooth

-6 -4 -2 2 4 6

-1.5

-1.0

-0.5

0.5

1.0

1.5

f2[t,11]
-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

Let’s check the differences between both approximations. The deviations are due to the

numerical integration in the convolution integral.

In[]:= Plot[Abs[f1[t, 4] - f2[t, 5]], {t, 0, 2 Pi}, PlotRange → All, ImageSize → Small]

Out[]=

1 2 3 4 5 6

2. × 10-11

4. × 10-11

6. × 10-11

8. × 10-11

1. × 10-10

1.2 × 10-10

1.4 × 10-10

8 Fourier Analysis with Mathematica 1

1.2 Properties of Fourier Series

The following are examples of how the Fourier coefficients change (or not), when a periodic

function is shifted, mirrored or its amplitudes are modulated.

Integration Interval, Time Reversal

For T-periodic functions, it is clear that the integration interval for calculating the Fourier

coefficients can be shifted and only depends on the period duration. It is also clear that even

periodic functions have a cos series, odd ones a sine series. With time reversal from f(t) to

the function f(-t), the Fourier coefficients ck are transformed to c-k (substitution rule for

integrals) and with complex conjugation of f to c-k .

Similarity

The function f(at) similar to a periodic function f(t), a >0, has the same Fourier coefficients.

However, their frequency assignment changes. As an example, we consider the sawtooth(t)

and the scaled similar function f(t)=sawtooth(2t), their Fourier series expansions up to a

certain degree and their Fourier coefficients.

Example 5. We see the same Fourier coefficients/amplitudes, but assigned to double the

frequencies compared to the original sawtooth.

To put it graphically: The signal f runs twice as fast, but otherwise looks the same, mathemati -

cally "similar".

In[]:= FourierTrigSeries [f[2 t], t, 8]

PlotSin[2 t] +
1

2
Sin[4 t] +

1

3
Sin[6 t] +

1

4
Sin[8 t], {t, -13, 13},

PlotStyle → Directive [Blue, Thickness [0.008]],

PlotRange → All, ImageSize → Small , PlotLabels → Style["f[2t]", 14]

Out[]= Sin[2 t] +
1

2
Sin[4 t] +

1

3
Sin[6 t] +

1

4
Sin[8 t]

Out[]=

f[2t]

-10 -5 5 10 15

-1.5

-1.0

-0.5

0.5

1.0

1.5

Chapter1 Basics on Fourier Series 9

Translations of a Signal

A "time shift" of a T-periodic signal does not change its amplitudes, but its phases. For f(t+t0)

each Fourier coefficient is multiplied by Exp(ⅈkω0t0) for the phase shift (ω0= 2 π / T).

Example 6. To illustrate this, we shift the 2π-periodic sawtooth by t0 = π and look at the

Fourier coefficients: They are then each multiplied by (-1)k in comparison with the

unshifted function, resulting in an alternating series.

In[]:= ftransl [t_] = sawtooth [t + Pi]

g7 = Plot- 1

2
t (-UnitStep [-π+ t] + UnitStep [π+ t]), {t, -Pi, Pi},

PlotStyle → Directive [Blue, Thickness [0.01]],

PlotRange → All, PlotLabels → Style["shifted sawtooth ", 14];
trigpol5 [t_] = FourierTrigSeries [ftransl [t], t, 5]

g8 = Plot[trigpol5 [t], {t, -2 Pi, 2 Pi},

PlotStyle → Directive [Blue, Thickness [0.01]],

PlotRange → All, PlotLabels → Style["shifted approximation ", 14]];

Show [

g7,

g8]

Out[]= -
1

2
t (-UnitStep [-π+ t] + UnitStep [π+ t])

Out[]= -Sin[t] +
1

2
Sin[2 t] -

1

3
Sin[3 t] +

1

4
Sin[4 t] -

1

5
Sin[5 t]

Out[]=

shifted sawtooth

shifted approximation
-6 -4 -2 2 4 6

-1.5

-1.0

-0.5

0.5

1.0

1.5

10 Fourier Analysis with Mathematica 1

Amplitude Modulation, Translation of the Spectrum

Amplitude modulation causes a translation of the spectrum.

This is one of the most important properties , because in modern communication systems

like mobile telephony, digital broadcasting or WLAN the information is transmitted in the

complex amplitudes of trigonometric polynomials in high frequency bands. Amplitude

modulation is therefore a method of transferring a signal with a limited bandwidth to a

desired frequency band for transmission and returning it to the original frequency band for

reception. Sidebands are suppressed in each case (once the left suppressed, once the right).

Thus, by this method considerable power losses have to be accepted.

Example 7. We multiply the trigonometric polynomial generated last with Cos[5t]. The result

is a spectral shift to the left and to the right, i.e. two sidebands and a halving of the spectral

values. Everyone is probably familiar with an application example on radio receivers with

transmissions that can be received via AM (amplitude modulation). The amplitude modula -

tion ampmod[t] is shown in the subsequent plot:

In[]:= ampmod [t_] := trigpol5 [t] Cos[5 t];

plota := Plot[{trigpol5 [t]}, {t, -2 Pi, 2 Pi},

PlotStyle → Directive [{Blue}, Thickness [0.01]], PlotRange → All,

ImageSize → Medium , PlotLabels → Style[trigpol5 , 14]];

plotb := Plot[{- trigpol5 [t]}, {t, -2 Pi, 2 Pi},

PlotStyle → Directive [{Black }, Thickness [0.007]],

PlotRange → All, ImageSize → Medium];

plotc := Plot[ampmod [t], {t, -2 Pi, 2 Pi},

PlotStyle → Directive [{Red}, Thickness [0.008]], PlotRange → All,

ImageSize → Medium , PlotLabels → Style["ampmod [t], red", 14]];

Show [plota , plotb , plotc]

trigpol5

ampmod[t], red

-6 -4 -2 2 4 6

-1.5

-1.0

-0.5

0.5

1.0

1.5

Here the shifted spectrum and the corresponding trigonometric polynomial:

Chapter1 Basics on Fourier Series 11

In[]:= FourierCoefficient [ampmod [t], t, k]

FourierTrigSeries [ampmod [t], t, 10]

Out[]=

-
ⅈ

20
k ⩵ -10

ⅈ
20

k ⩵ 10

-
ⅈ

16
k ⩵ -1 || k ⩵ 9

ⅈ
16

k ⩵ -9 || k ⩵ 1

-
ⅈ

12
k ⩵ -8 || k ⩵ 2

ⅈ
12

k ⩵ -2 || k ⩵ 8

-
ⅈ
8

k ⩵ -3 || k ⩵ 7

ⅈ
8

k ⩵ -7 || k ⩵ 3

-
ⅈ
4

k ⩵ -6 || k ⩵ 4

ⅈ
4

k ⩵ -4 || k ⩵ 6

0 True

Out[]= -
Sin[t]

8
+

1

6
Sin[2 t] -

1

4
Sin[3 t] +

1

2
Sin[4 t] -

1

2
Sin[6 t] +

1

4
Sin[7 t] -

1

6
Sin[8 t] +

1

8
Sin[9 t] -

1

10
Sin[10 t]

To illustrate this, we will use only the “upper sideband signal” in the frequency band from 6

to 10 rad/s, subject it to renewed amplitude modulation with Cos[5 t], filter out (by hand)

the lower sideband up to 5 rad/s in the result and plot the result. You can see the shape of

the function trigpol5[t] again, but now with considerably reduced amplitudes.

12 Fourier Analysis with Mathematica 1

In[]:= uppersidebandsignal [t_] :=

-
1

2
Sin[6 t] +

1

4
Sin[7 t] -

1

6
Sin[8 t] +

1

8
Sin[9 t] -

1

10
Sin[10 t];

pup = Plot[uppersidebandsignal [t], {t, -2 Pi, 2 Pi},

PlotStyle → Directive [Blue, Thickness [0.006]],

PlotRange → All, PlotLabel → Style["upper sideband signal ", 12]];

TrigReduce [Cos[5 t] uppersidebandsignal [t]]

lowersidebandsignal [t_] =

1

240
× (-60 Sin[t] + 30 Sin[2 t] - 20 Sin[3 t] + 15 Sin[4 t] - 12 Sin[5 t]);

plow = Plot[lowersidebandsignal [t], {t, -2 Pi, 2 Pi},

PlotStyle → Directive [Blue, Thickness [0.008]], PlotRange → All,

PlotLabel → Style["lower sideband signal after second modulation ", 12]];

Show [pup]

Show [plow]

Out[]=

1

240
× (-60 Sin[t] + 30 Sin[2 t] - 20 Sin[3 t] + 15 Sin[4 t] - 12 Sin[5 t] -

60 Sin[11 t] + 30 Sin[12 t] - 20 Sin[13 t] + 15 Sin[14 t] - 12 Sin[15 t])

Out[]=

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

upper sideband signal

Out[]=

-6 -4 -2 2 4 6

-0.4

-0.2

0.2

0.4

lower sideband signal after second modulation

The result right is again the signal trigpol5[t], but with amplitudes decreased by a factor of

1/4.

Chapter1 Basics on Fourier Series 13

Smoothness and Magnitude of the Spectrum

The smoother a periodic function is, the faster the spectral values approach zero for |k|⟶∞.

We consider two examples.

Example 8. The first example is the function g(t)=(t^2), 2π-periodically extended. It is contin -

uous on ℝ, but not continuously differentiable.

Its spectrum decreases in magnitude like 1/|k|^2. The second example is the function

f(t)=t(π+t) on [-π ,0] and f(t)=t(π-t) on [0,π]. Its 2π-periodic extension is continuously differen -

tiable with piecewise continuous second derivative.

Its spectrum decreases for |k|⟶∞ like 1/|k|^3.

In[]:= g[t_] := t^ 2

FourierTrigSeries [g[t], t, 6]

Out[]=

π2

3
+ 4 -Cos[t] +

1

4
Cos[2 t] -

1

9
Cos[3 t] +

1

16
Cos[4 t] -

1

25
Cos[5 t] +

1

36
Cos[6 t]

In[]:= f[t_] := Piecewise [{{t (Pi + t), t ≤ 0}, {t (Pi - t), t ≥ 0}}]

FourierTrigSeries [f[t], t, 10]

Out[]=

8 Sin[t]

π +
8 Sin[3 t]

27 π +
8 Sin[5 t]

125 π +
8 Sin[7 t]

343 π +
8 Sin[9 t]

729 π
It can be seen below that f has a continuously differentiable 2π-periodic extension, which,

however, only has a piecewise continuous second derivative.

In[]:= f '[t]

Plot[f '[t], {t, - Pi, Pi},

PlotStyle → Directive [Blue, Thickness [0.01]],

PlotRange → All, PlotLabels → Style["f'(t)", 14], ImageSize → Small]

Out[]=

π+ 2 t t < 0

π t ⩵ 0

π- 2 t True

Out[]=

f'(t)

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

The correlations between (local) differentiability properties on the one hand and the (global)

decay of the spectrum on the other hand show that, for example, small local perturbations

with loss of differentiability properties can drastically change the entire spectrum of a func-

tion.

In the practice of signal processing such disturbances are often unavoidable and inevitably

result in major challenges for problems in which estimates of the spectra of the signals shall

be given from observed function data. The mathematical tools are preferably variants of low-

pass filters for the so-called “denoising” before the spectral estimation. Conversely, in order

to simulate steep signal slopes using a trigonometric polynomial requires high-frequency

components in the approximation, i.e. in other words, a large bandwidth.

14 Fourier Analysis with Mathematica 1

Uniform Convergence of Fourier Series of Continuous Functions on a Closed Bounded

Interval

As we have seen, Fourier series of functions f on an interval [a,b] exhibit the Gibbs phe-

nomenon. However, if you are interested in a trigonometric approximation of f in the inter -

val [a,b] and f is continuous, you achieve uniform convergence on the closed interval [a,b] by

extending the function to a continuous 2(b-a)-periodic function on the entire real axis. You

then get on [a,b] uniform convergent trigonometric approximations by periodic convolu -

tions of f with the Fejér kernels. If f is continuous and additionally piecewise continuously

differentiable, you achieve uniform convergent Fourier series approximations by 2(b-a)-

periodic convolutions of f with the according Dirichlet kernels. This is the basic fact for a

proof of the Weierstrass approximation theorem , because the trigonometric approxima -

tions can again be uniformly approximated by their Taylor polynomials.

Example 9. Consider the function f(t)=t on [-1,2] and its 6-periodic continuous extension.

In[]:= f[t_] = t (HeavisideTheta [t + 1] - HeavisideTheta [t - 2]);

p1 = Plot[f[t], {t, -2, 4}, PlotLabel → "f(t)"];

fextended1 [t_] = f[t] + f[t - 3] + f[t - 6];

In[]:= p2 = Plot[fextended1 [t], {t, -1, 2},

PlotLabel → "Fourier Expansion of the 3-periodic

extension with Gibbs Phenomenon ", PlotRange → All, PlotStyle → Directive [

Blue, Thickness [0.008]]];

fser1[t_] = fourpolynomial [f , -1, 2, 6];

In[]:= p3 = Plot[fser1[t], {t, -1, 2}, PlotStyle → Directive [

Red, Thickness [0.008]]];

Show [p2, p3]

Out[]=

-1.0 -0.5 0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

1.5

2.0

Fourier Expansion of the 3-periodic

extension with Gibbs Phenomenon

In the red curve we clearly see the Gibbs phenomenon, which prevents uniform conver -

gence of the Fourier expansions in the interval [-1, 2].

Chapter1 Basics on Fourier Series 15

Example 10. Now, we extend the function f to a 6 - periodic continuous and piecewise contin -

uously differentiable function on the entire real axis and build the Fourier series of that

extension. Then, this series converges uniformly to f on the entire closed interval [-1, 2] (see

the red approximation in the illustration below).

In[]:= fextended2 [t_] = f[t] - (f[t - 3] - 1) (HeavisideTheta [t - 2] - HeavisideTheta [t - 5]);

p4 = Plot[fextended2 [t], {t, -1, 5},

PlotLabel → "Fourier expansion in [-1,2] of the 6-periodic

continuous extension without Gibbs Phenomenon ",

PlotRange → All, PlotStyle → Directive [

Blue, Thickness [0.008]]];

fser2[t_] = fourpolynomial [fextended2 , -1, 5, 6]

Out[]=

75 π2 - 900 Cos π t

3
+ 200 Cos[π t] - 36 Cos 5 π t

3
- 36 3 -25 Sin π t

3
+ Sin 5 π t

3


150 π2

In[]:= p5 = Plot[fser2[t], {t, -1, 2},

PlotLabel → "Fourier expansion in [-1,2] of the 6-periodic

continuous extension without Gibbs Phenomenon ",

PlotRange → All, PlotStyle → Directive [

Red, Thickness [0.008]]];

Show [p4, p5]

Out[]=

-1 1 2 3 4 5

-1.0

-0.5

0.5

1.0

1.5

2.0

Fourier expansion in [-1,2] of the 6-periodic

continuous extension without Gibbs Phenomenon

Fourier Series of Derivatives and Integrals

The Fourier coefficients of the derivative f ' of a T-periodic function f with Fourier coeffi -

cients k are the coefficients ⅈω0 k with ω0 =2π/T. Of course, it is possible that the resulting

series no longer converges at any point, as the example of the sawtooth series immediately

shows.

If the derivative f' is piecewise continuous and its Fourier series converges at a point t0 , then

its limit is

f '(t0 +) + f 't0 -))/2 by the theorem of Fejér with right and left sided limits.

Much simpler is the integration of Fourier series f: They can be integrated term by term.

As integral function ∫0

t
f (x) ⅆx we obtain a periodic function oscillating on the ramp 0 t + F0 ,

where 0 is the mean value of f and F0 the mean value of the function ∫0

t
(f (x) - c0) ⅆx.

16 Fourier Analysis with Mathematica 1

Example 11. We consider as an example a partial sum of the sawtooth, shifted upwards by

1/2: You see the trigonometric polynomial, afterwards its integral function, and both plotted

In[]:= f[t_] = 1 / 2 + Sum[Sin[k t] / k, {k, 1, 4}]

p1 = Plot[f[t], {t, - 2 Pi, 2 Pi},

PlotStyle → Directive [Blue, Thickness [0.008]],

PlotRange → All, PlotLabels → Style["f(t)", 14]];

intf [t_] = TrigReduce [Integrate [f[x], {x, 0, t}]]

Out[]=

1

2
+ Sin[t] +

1

2
Sin[2 t] +

1

3
Sin[3 t] +

1

4
Sin[4 t]

Out[]=

1

144
× (205 + 72 t - 144 Cos[t] - 36 Cos[2 t] - 16 Cos[3 t] - 9 Cos[4 t])

In[]:= p2 = Plot[intf [t], {t, -4 Pi, 16 Pi}, PlotStyle → Directive [Blue, Thickness [0.008]],

PlotRange → All, PlotLabels → Style["intf [t]", 14]];

Show [p1]

Show [p2]

Out[]= f(t)

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

1.5

2.0

Out[]=

intf[t]

-10 10 20 30 40 50

-5

5

10

15

20

25

The result is a periodic function oscillating on the ramp c0 t + F0, c0 and F0 as above. The

function is zero at the origin.

The complete Fourier series of the sawtooth has a spectral decay like 1/k (the sawtooth is not

continuous), the integral function has a spectrum, which decays like 1/k2 for increasing |k|

(it is continuous, but is not continuously differentiable).

Check F0

In[]:= F0 = Integrate [Integrate [f[x] - 1 / 2, {x, 0, t}], {t, 0, 2 Pi}] / (2 Pi)

Out[]=

205

144

Chapter1 Basics on Fourier Series 17

We come to the important aspect that Fourier expansions of T-periodic functions f can be

seen as orthogonal projections of f into finite-dimensional subspaces of the space L2([0, T]),

the space of square integrable functions g: [0,T]⟶ℂ.

A partial sum of degree ⩽N of the Fourier series of a T-periodic square integrable function f

is the best approximation for f in the finite-dimensional subspace of L2([0, T]), which is

generated by the trigonometric functions 1, Cos[2πkt/T] and Sin[2πkt/T], k=1,...,N. It mini -

mizes the norm of the error (and thus the power losses in the approximation). It is therefore

the orthogonal projection of the function f into the subspace generated by trigonometric

functions according to the degree of f.

The inner product to "measure" orthogonality is the one usually considered in L2([0, T]).

This optimization with respect to the error in the quadratic mean (resp. in the RMS mean,

Root Mean Square) is one of the main reasons for the use of Fourier expansions in engineer -

ing, where good pointwise approximations are often less important than mean values as

defined by the concept of power. The series of magnitude squares of the (complex) Fourier

coefficients converges to the total power of the "signal" f. This is the meaning of the Parseval

equation.

As an example again the sawtooth: First the series of the squared absolute values of the

complex Fourier coefficients, afterwards the power calculated as mean square of the func-

tion. Their difference is zero, i.e., they are equal.

Sum[1 / (2 k ^ 2), {k, 1, Infinity }] - Integrate [(Pi - t)^ 2 / 4, {t, 0, 2 Pi}] / (2 Pi)

Out[]= 0

Sum[1 / (2 k ^ 2), {k, 1, Infinity }]

Out[]=

π2

12

18 Fourier Analysis with Mathematica 1

1.3 Orthogonal Projections into Finite-Dimensional Subspaces of L2([a, b])

Fourier series expansions of functions in L2([0, T]) with the orthogonal system of the

trigonometric functions 1, Cos[2πkt/T],Sin[2πkt/T], k=1,...,N, are only a first example of the

general concept of calculating with functions in a space L2([0, T]) as function series with the

help of a complete orthogonal system.

This corresponds to representations of vectors in finite dimensional spaces by different

bases. The partial sums of such series are then again orthogonal projections into the finite-

dimensional subspaces of L2([0, T]) generated by the participating basis functions, and thus

the best approximations to the function in the respective subspaces in the sense of the

L2([0, T]) norm.

There are many such orthogonal systems of functions in L2([0, T]), analogously in L2([a, b]),

which are used in mathematics and technology. We consider here only one example, others

in subsequent chapters. As an example, consider the task of approximating the function

f[t]=Sin[3t] in the interval [-1,1] by a polynomial. Polynomials are often preferred

approximation functions for many reasons. They allow for particularly simple processing

such as differentiating, integrating, calculating values.

As the first method of approximation, you usually learn Taylor expansion in the first

semester. You also learn that a Taylor polynomial provides the exact function value at the

development point, but the error often increases with the distance from the development

point.

A polynomial approximation in mean square has the property that the approximating

function oscillates around the given function, but remains near to it on the entire interval.

We compare two approximations of a sine function, at first with the Taylor polynomial of

degree 5 with expansion at zero, secondly an approximation in mean square with the

orthogonal system of the Legendre polynomials in the real vector space L2([- 1, 1]).

As inner product we choose <f,g>= ∫-1

1
f (x) g (x) ⅆx .

Example 12. Plot of the Taylor polynomial n1[t] of degree 5 for the sine and a plot of the sine

function:

In[]:= n1[x_] = Normal [Series [Sin[3 x], {x, 0, 5}]]

p1 := Plot[Sin[3 x], {x, -1, 1}, PlotStyle → Directive [Blue, Thickness [0.008]],

PlotRange → All, PlotLabels → Style["Sin[3x]", 14]]

p2 := Plot[n1[x], {x, -1, 1}, PlotStyle → Directive [Red, Thickness [0.008]],

PlotRange → All, PlotLabels → Style["Taylor polynomial ", 14]]

Show [p1, p2, ImageSize → Medium]

Out[]= 3 x -
9 x3

2
+

81 x5

40

Chapter1 Basics on Fourier Series 19

Sin[3x]

Taylor polynomial

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

You see the typically increasing error with the distance from zero.

Now the approximation with the orthogonal system of the Legendre polynomials.

Mathematica knows these polynomials as LegendreP. In normed form they are defined by

In[]:= LPol[k_, x_] = 1 / (2 ^ k k !) D[(x ^ 2 - 1)^ k, {x, k}] / Sqrt[2 / (2 k + 1)]

Out[]=

2-
1

2
-k

y. [2 + n.] [k]

1

1+2 k

As an example the normed Legendre polynomial of degree 3 and its L2([- 1, 1]) norm with

the inner product from above:

In[]:= Expand [LPol[3, x]]

Integrate [LPol[3, x]^ 2, {x, -1, 1}]

Out[]= -
3

2

7

2
x +

5

2

7

2
x
3

Out[]= 1

The Legendre polynomials in Mathematica implemented as LegendreP[k,x] are differently

normed.

For comparison LegendreP[3,x] in Mathematica and its norm with our inner product.

In[]:= Expand [LegendreP [3, x]]

Sqrt[Integrate [LegendreP [3, x]^ 2, {x, -1, 1}]]

Out[]= -
3 x

2
+
5 x3

2

Out[]=

2

7

Plot of the first 5 Legendre polynomials normed as above. Observe the symmetry properties

and the numbers of zeros of them in [-1,1]. In the image they are labeled as P0 to P4:

20 Fourier Analysis with Mathematica 1

In[]:= Plot[Evaluate [Table [LegendreP [n, x] / Sqrt[2 / (2 n + 1)], {n, 0, 4}]], {x, -1, 1},

PlotStyle → Directive [Hue, Thickness [0.007]],

PlotRange → All, PlotLabels → {"P0", "P1", "P2", "P3", "P4"}]

Out[]=

P0

P1

P2

P3

P4

-1.0 -0.5 0.5 1.0

-2

-1

1

2

Example 13. Now to the approximation of Sin[3x] in mean square (often also called in root

mean square RMS, if the root is taken) with the Legendre polynomials up to degree 5:

In[]:= Faktor [n_] := NIntegrate [LPol[n, x] Sin[3 x], {x, -1, 1}]

n2[x_] = Expand [Sum[Faktor [n] × LPol[n, x], {n, 0, 5}]]

(*/(2/(2 n +1)),{n,0,5}]], if you use LegendreP instead of LPol *)

0. + 2.97177 x - 4.23916 x
3
+ 1.42043 x

5

See the approximating polynomial, as above plotted with an offset of +0.1 , so that one can

distinguish it at all from the sine function.

Thus, we see that it is a better approximation over the whole interval than the Taylor polyno -

mials. Finally, we look at the absolute errors for the Taylor polynomial and for the approxima -

tion with the Legendre polynomials.

In[]:= p3 := Plot[n2[x] + 0.1, {x, -1, 1},

PlotStyle → Directive [Red, Thickness [0.005]], PlotRange → All,

PlotLabels → Style["Legendre approximation + 0.1", 14]]

(* shown with offset +0.04 for visibility *)

Show [p1, p3]

Out[]= Sin[3x]

Legendre approximation + 0.1

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

The approximation errors of the Taylor polynomial compared to the Legendre polynomial:

Chapter1 Basics on Fourier Series 21

In[]:= p4 := Plot[Abs[Sin[3 x] - n1[x]], {x, -1, 1},

PlotStyle → Directive [Blue, Thickness [0.008]],

PlotRange → All, PlotLabels → Style["Error Taylor Polynomial ", 14]]

p5 := Plot[Abs[Sin[3 x] - n2[x]], {x, -1, 1},

PlotStyle → Directive [Red, Thickness [0.01]], PlotRange → All,

PlotLabels → Style["Error Legendre Polynomial ", 14]]

Show [p4, p5, ImageSize → Medium]

Out[]=

Error Taylor Polynomial

Error Legendre Polynomial
-1.0 -0.5 0.5 1.0

0.1

0.2

0.3

0.4

You realize that the concept of expanding a function according to an orthogonal system in

spaces with an inner product can be a powerful tool, if you want or need to replace compli -

cated functions by approximations with easier to handle functions. It should be pointed out

that also when using orthogonal systems other than the trigonometric functions as in classi -

cal Fourier analysis for functions with jump points the Gibbs phenomenon often occurs

again. To combat this, you can also use convolutions with suitable kernels, as we have seen

above with the Fejér kernels for Fourier series.

22 Fourier Analysis with Mathematica 1

Approximation by Legendre polynomials

We see the Gibbs phenomenon and we also see increasing errors at the edges of the interval

[-1,1]. The behavior at the edges can be influenced by introducing weight functions to the

inner product. We will demonstrate this in examples of approximation and interpolation

using Chebyshev polynomials in a subsequent section related to the discrete Fourier and

discrete cosine transform (DFT and DCT).

Example 14. As an example, we take the sign function in the interval [-1,1] and use for approx

imation the Legendre polynomials as before, this time up to degree 25. The attempt to

achieve a good approximation with a Taylor polynomial over the entire interval would be an

unsuitable attempt a priori because of the jump point. For reasons of symmetry, we only

have to consider the odd polynomials.

In[]:= f[x_] = 2 UnitStep [x] - 1;

p6 = Plot[f[x], {x, -0.7, 0.7},

PlotStyle → Directive [Blue, Thickness [0.007]],

PlotRange → All, PlotLabel → Style["Gibbs Phenomenon ", 14]];

factor2 [n_] = Integrate [LegendreP [n, x] f[x], {x, -1, 1}];

n3[x_] = Sum[factor2 [n] LegendreP [n, x] / (2 / (2 n + 1)), {n, 1, 25, 2}];

p7 = Plot[n3[x], {x, -0.7, 0.7},

PlotStyle → Directive [Red, Thickness [0.008]],

PlotRange → All, PlotLabel → Style["Gibbs Phenomenon ", 14]];

p7a = Show [p6, p7];

Show [p7a]

Out[]=

-0.6 -0.4 -0.2 0.2 0.4 0.6

-1.0

-0.5

0.5

1.0

Gibbs Phenomenon

A Fourier Series of a periodic function, which is not piecewise continuously differentiable

Since in my book - as in other introductory textbooks - mainly Fourier series representations

of piecewise continuously differentiable periodic functions are treated for assertions on

pointwise convergence, an example of a Fourier series for a periodic function is shown here,

which does not fulfill this requirement.

In[]:= f[t_] := Log[Abs[2 Sin[t / 2]]] (UnitStep [t] - UnitStep [t - 2 Pi])

Below is the plot of the 2π periodic extension in the interval [-2π , 2π]. Since there are no

limits for t⟶0 or t⟶2 , the function is not piecewise continuously differentiable, but can

be integrated to [0,2]. It has a Fourier series representation for t≠2k , k in Z.

We let Mathematica calculate a partial sum of this Fourier series. Although the series is very

similar to the the sawtooth series (there sin(kt) in the summands of the partial sums, here it

is -cos(kt) instead), the function shown is completely different from the sawtooth. You can

also see in the subsequent example that there are notable differences between sine series

and cosine series.

Chapter1 Basics on Fourier Series 23

Example 15.

In[]:= Plot[f[t + 2 Pi] + f[t], {t, -2 Pi, 2 Pi},

PlotStyle → Directive [Blue, Thickness [0.007]],

ImageSize → Small , PlotLabels → Style["f[t]", 14]]

Out[]=

f[t]

-6 -4 -2 2 4 6

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

In[]:= FourierTrigSeries [f[t + 2 Pi] + f[t], t, 6]

Out[]= -Cos[t] -
1

2
Cos[2 t] -

1

3
Cos[3 t] -

1

4
Cos[4 t] -

1

5
Cos[5 t] -

1

6
Cos[6 t]

1.4 Example of Convergent Trigonometric Series,

which are not Classical Fourier Series

In the first example, a series is shown that is not a classical Fourier series.

In the second example below, we look at one of the first periodic functions you can think of,

namely the tangent function. It is unbounded, thus not piecewise continuously differen -

tiable. It does not have a classical Fourier series representation. It is possible only with distri -

bution theory that the tangent can be understood as a periodic distribution with a so-called

generalized Fourier series representation (see [1] and a later booklet on distributions).

Not a classical Fourier series

The example is a sine series converging everywhere, but it is not a classical Fourier series.

In[]:= f[t_] = Sum[Sin[k t] / Log[k], {k, 2, Infinity }]

Out[]= 
k=2

∞ Sin k t
Log k

A similar cosine series is a classical Fourier series

In[]:= Sum[Cos[k t] / Log[k], {k, 2, Infinity }]

Out[]= 
k=2

∞ Cos k t
Log k

24 Fourier Analysis with Mathematica 1

Mathematica returns the definition and cannot determine an explicit simpler representation

of the associated function. You can show that the sine series converges everywhere, in every

interval [h,2π-h], h>0, even uniformly to a continuous function. The function f[t] cannot be a

classical Fourier series of a function integrable on [0, 2π], since the series ∑k=2
∞ 1 / (k Log[k])

diverges. For the sine coefficients bk of the Fourier series of an integrable function, however,

the series ∑k=1
∞ bk/k must be convergent. For a cosine series, a corresponding coefficient

condition does not apply. For example, the series ∑k=2
∞ cos (kt) / Log (k) is in fact a classical

Fourier series (to be found in [11] A. Zygmund, Trigonometric Series, chapter V, section 1).

These examples alone show subtle mathematical facts as soon as one is interested in point -

wise representations of periodic functions by Fourier series. The difficulties are caused in

particular by the integral definition used, because Fourier coefficients are to be calculated by

integration. They were already the reason for the development of set theory by G. Cantor,

the development of the integral concepts of B. Riemann and later of H. Lebesgue, for numer -

ous works of great mathematicians such as G. H. Hardy, A. Zygmund and many others, as

well as for the development of the modern concept of functions by A.L. Cauchy, P.L. Dirich -

let and the entire mathematical development in analysis since about the middle of the 19th

century.

Now to the tangent function. It does not have a classical Fourier series representation.

Mathematica does not return a result for the Fourier series expansion.

We will deal with the representation of the tangent function as a periodic distribution in

another booklet on “Distributions and Application Examples with Mathematica”.

In[]:= FourierTrigSeries [Tan[t], t, 5]

Out[]= FourierTrigSeries [Tan[t], t, 5]

1.5 Graphical Illustrations of Trigonometric Polynomials

Graphical representation of a trigonometric polynomial as a circular wave

Clear ["Global` *"]

In[]:= ω0 = Pi / 2; T = 2 Pi /ω0;

P[t_] = I / 2 Sin[ω0 t] + I Sin[2 ω0 t] - Cos[3 ω0 t]

Table [{t, Re[P[t]], Im[P[t]]}, {t, 0, 6, 0.015 }];

Out[]= -Cos 3 π t

2
+ 1

2
ⅈ Sin π t

2
+ ⅈ Sin[π t]

Chapter1 Basics on Fourier Series 25

In[]:= Show [(*circularly wave*)

Normal [ParametricPlot3D [{t, Re[P[t]], Im[P[t]]}, {t, 0, 6}, Mesh → 50,

MeshStyle → Directive [Thin, Blue],

PlotStyle → Directive [Darker [Red], Thickness [0.006], Arrowheads [.02]]]] /.

Point [{x_, y_, z_}] ⧴ If[Chop [Norm [{y, z}]] < 0.1, Point [{x, 0, 0}],

Arrow [{{x, 0, 0}, {x, y, z}}]], (*axes*)

Graphics3D [{{Purple , {Arrowheads [.025], Arrow [{{0, 0, 0}, {7, 0, 0}}]},

{Arrowheads [.025 {-1, 1}], Arrow [{{0, 1.5, 0}, {0, -1.5, 0}}],

Arrow [{{0, 0, 1.5}, {0, 0, -1.5}}]}}}],

Axes → True, AxesLabel → {"Time t", " Re(P(t))", "Im (P(t))"},

LabelStyle → Directive [Black , FontSize → 11], Boxed → False ,

BoxRatios → {7, 2, 2}, PlotRange → All, ViewPoint → {5, -5, 5}]

Out[]=

Representation of the same example as a curve in the complex plane over one period.

The curve starts at (-1,0) and changes color and line dashing with increasing t all T/4.

In[]:= plot1a = ParametricPlot [{Re[P[t]], Im[P[t]]},

{t, 0, T / 4}, PlotStyle → {Black }, PlotRange → All];

plot1b = ParametricPlot [{Re[P[t]], Im[P[t]]}, {t, T / 4, T / 2},

PlotStyle → {Dashing [Tiny]}, PlotRange → All];

In[]:= plot2a = ParametricPlot [{Re[P[t]], Im[P[t]]},

{t, T / 2, 3 T / 4}, PlotStyle → {Red}, PlotRange → All];

plot2b = ParametricPlot [{Re[P[t]], Im[P[t]]}, {t, 3 T / 4, T},

PlotStyle → {Dashing [Large]}, PlotRange → All];

In[]:= Show [plot1a , plot1b , plot2a , plot2b , ImageSize → Medium]

26 Fourier Analysis with Mathematica 1

-1.0 -0.5 0.5 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

Representation of Real Part and Imaginary Part over one period

In[]:= plot3 = Plot[Re[P[t]], {t, 0, T}, PlotStyle → Directive [Blue],

PlotRange → All, PlotLabels → Style["Re[P[t]]", 14]];

plot4 = Plot[Im[P[t]], {t, 0, T}, PlotStyle → Directive [Red],

PlotRange → All, PlotLabels → Style["Im[P[t]]", 14]];

Show [{plot3, plot4 }, ImageSize → Medium]

Out[]=

Re[P[t]]

Im[P[t]]
1 2 3 4

-1.5

-1.0

-0.5

0.5

1.0

1.5

Chapter1 Basics on Fourier Series 27

Representation by Magnitude and Phase over one period

In[]:= plot5 = Plot[Abs[P[t]], {t, 0, T}, PlotStyle → Directive [Blue],

PlotRange → {0, 2}, PlotLabels → Style["Abs[P[t]]", 14]]

Out[]= Abs[P[t]]

0 1 2 3 4

0.5

1.0

1.5

2.0

In[]:= plot6 = Plot[Arg[P[t]], {t, 0, T}, PlotStyle → Directive [Red],

PlotRange → {-6 / 5 Pi, 6 / 5 Pi}, PlotLabels → Style["Arg[P[t]]", 14]]

Out[]=

Arg[P[t]]

1 2 3 4

-2

2

4

28 Fourier Analysis with Mathematica 1

2 Application of Fourier Series to Linear Differential Equations

The aim of the chapter is to show some application examples of Fourier series with the help

of Mathematica for the solution of linear differential equations with constant coefficients.

These examples demonstrate the benefits of Fourier analysis for such differential equations.

In a later booklet, when we explain distributions and Fourier transforms with Mathematica,

we will also treat 3D heat and wave equations, further approximation tasks and signal pro-

cessing examples. Here, we will look at the DFT, DCT and Chebyshev polynomials and some

of their typical properties that are relevant for applications in the subsequent chapter.

2.1 Stable Ordinary Linear Differential Equations with Constant Coefficients

Asymptotically stable linear ordinary differential equations P(D)u=f of order n with constant

coefficients have characteristic polynomials P(z) = ∑k=0
n ak zk (D stands for the differential

operator d/dt), whose zeros all have negative real parts. It is necessary that P is a so-called

Hurwitz polynomial, i.e., that all coefficients have the same sign.

In my textbook, cited at the beginning, it is shown that such equations with a continuous,

piecewise continuously differentiable T-periodic right-hand side f have a uniquely deter -

mined T-periodic solution u, which can be obtained by the T-periodic convolution of f with

the corresponding T-periodic transfer function h.

The Fourier series of this T-periodic transfer function has the Fourier coefficients

hk = 1 / P(ⅈω0 k), ⅈ2 = -1, ω0 = 2 π/T. The convolution is n-times continuously differentiable.

It describes the long-term behavior of the solution after the (rapid) decay of the transient

process and usually has a different amplitude and phase spectrum than the excitation f.

a) A forced periodic oscillation of a mass on a spring

Example 1. Let a mass m on a spring be excited by a periodic force F. The damping coeffi -

cient is k>0, the spring constant d>0. The describing differential equation for the displace -

ment y[t] is

In[]:= dgl = m y ''[t] + k y '[t] + d y[t] ⩵ F[t]

Out[]= d y[t] + k y′[t] + m y′′[t] ⩵ F[t]

To illustrate this, we set F (t) = F0 Cos[ωt], F0 =0.2 N, m=1 kg, k=0.2 kg/s, d=1/2 N /m, ω=2π
rad/s. The equation is asymptotically stable, as can be seen immediately from the zeros of

the characteristic polynomial: It has conjugate complex zeros with negative real parts.

In[]:= m := 1; k := 0.2; d := 1 / 2; F0 := 0.2; ω := 2 π; F[t_] := F0 Cos[ω t] ;

P[z_] := m z ^ 2 + k z + d;

zeros = Solve [P[z] ⩵ 0, z]

Out[]= {{z → -0.1 - 0.7 ⅈ}, {z → -0.1 + 0.7 ⅈ}}
The following is the periodic solution obtained by setting the solution of the homogeneous

differential equation is set to zero, here by setting the occurring parameters C[1], C[2] to

zero. This solution has the same frequency as the exciting force F with the oscillation period

T=1s, but a different phase and a different, smaller amplitude. It describes the resulting

oscillation after the transient decays. We first solve the equation using the existing Mathemat -

ica algorithms.

In[]:= solution = DSolve [dgl, y, t];

We call the periodic solution f, as defined by the Mathematica result and graphically shown

in a section 0⩽t⩽4. Observe the strong damping compared to F(t).

In[]:= f := solution 〚1, 1, 2〛 /. {C[1] → 0, C[2] → 0}

Plot[f[t], {t, 0, 4}, PlotStyle → Directive [

Blue, Thickness [0.008]], PlotRange → All,

ImageSize → Small , PlotLegends → Style["f[t]", 12]]

Out[]=
1 2 3 4

-0.004

-0.002

0.002

0.004

f[t]

The resulting amplitude and phase shift are simply obtained from the frequency response.

In this case, the Fourier coefficients of the excitation F are to be multiplied by 1/P (±ⅈω). We

first generate the Fourier coefficients of F and thus once again the solution, which can be

obtained by periodically convolving F with the corresponding periodic transfer function, i.

e., by multiplying the associated Fourier coefficients. As always in time - invariant linear

systems, "no new frequencies" are generated. We state the solution once again using our

existing knowledge of Fourier series and this time call the result g:

In[]:= FourierCoefficient [F[t], t, n, FourierParameters → {1, 2 Pi}]

Out[]=  0.1 n ⩵ -1 || n ⩵ 1

0. True

Now the trigonometric polynomial, which solves the equation and a plot

In[]:= g[t_] = FullSimplify [1 / (10 P[-ⅈ ω]) Exp[-ⅈ ω t] + 1 / (10 P[ⅈ ω]) Exp[ⅈ ω t]]

Out[]= -0.00512572 Cos[2 π t] + 0.00016525 Sin[2 π t]

Now the resulting amplitude and phase shift, calculated from the frequency response

1/P (ⅈ ω). The parameter ω was the angular frequency of the excitation.

In[]:= amp = N[2 Abs[FourierCoefficient [F[t], t, 1, FourierParameters → {1, 2 Pi}] / P[ⅈ ω]]]

Out[]= 0.00512838

In[]:= phase = N[Arg[1 / P[ⅈ ω]]]
Out[]= -3.10936

The positive resonant circular frequency and the solution amplitude at such a frequency

results from the maximum value of |1/P(ⅈω)|, ω>0. It is ωr = d /m - k2  2 m2 . You can

also search with Mathematica for this extreme point with the FindMaximum command.

30 Fourier Analysis with Mathematica 1

Compare the value with the shown below. Since our excitation frequency was far above the

resonance frequency, we observe a very strong amplitude damping in the resulting oscilla -

tion.

In control engineering, the differential equation of the same form, describes a so-called PT2

element, or in other words a 2nd order low-pass filter.

The resonant angular frequency is

In[]:= resonant = N[Sqrt[d /m - k ^ 2 / (2 m ^ 2)]] (* angular frequency *)

Out[]= 0.69282

The amplitude at that angular frequency would be

In[]:= N[2 Abs[FourierCoefficient [F[t], t, 1,

FourierParameters → {1, 2 Pi}] / P[ⅈ resonant]]]

Out[]= 1.42857

Let us test it and see the phase shift (delay) in the solution for excitation with the resonant

frequency

In[]:= ω := 0.69282 ; F[t_] := F0 Cos[ω t] ; solution := DSolve [dgl, y, t];

f = solution 〚1, 1, 2〛 /. {C[1] → 0, C[2] → 0};

Plot[{f[t], F[t]}, {t, 0, 20}, PlotStyle → {Red, Blue}, PlotStyle → Directive [

Thickness [0.005]], PlotRange → All, ImageSize → Medium ,

PlotLabels → {"f[t]", "F[t]"}] (* Force and Solution *)

FindMaximum [f[t], {t, 0, 6}]

Out[]=

f [t]

F[t]

5 10 15 20

-1.5

-1.0

-0.5

0.5

1.0

1.5

Out[]= {1.42857 , {t → 2.06034 }}

Below is the amplitude response and the phase response of the pendulum, considered as a

linear transmission system in analogy to a 2nd order lowpass filter.

A representation only for positive angular frequencies is sufficient due to the known symme -

tries.

Chapter 2 Application of Fourier Series to Linear Differential Equations 31

In[]:= p1 = Plot[Abs[1 / P[ⅈ ω]], {ω, 0, 6.3}, PlotStyle → Directive [

Blue, Thickness [0.008]], PlotRange → All,

ImageSize → Small , PlotLegends → Style["Abs[1/P[ⅈω]]", 12]]

FindMaximum [Abs[1 / P[ⅈ ω]], {ω, 0, 2}]

Out[]=

1 2 3 4 5 6

1

2

3

4

5

6

7

Abs [1/P[ⅈω]]

Out[]= {7.14286 , {0.69282 → 0.69282 }}

In[]:= p2 = Plot[Arg[1 / P[ⅈ ω]], {ω, 0, 6.3}, PlotStyle → Directive [

Blue, Thickness [0.008]], PlotRange → All,

ImageSize → Small , PlotLegends → Style["Arg[1/P[ⅈω]]", 12]]

Out[]=

1 2 3 4 5 6

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Arg [1/P[ⅈω]]

The maximum of the frequency response shows again the amplification at the resonant

frequency from amplitude 0.2 of F to 1.4287 in the system response f, when the system input

F has that resonant frequency, and you can see the delay between input and response from

the phase shift (about 2s in that example).

b) A Fourier series as periodic force

Example 2. Now, we consider the same equation with excitation

F[t] = F0 ∑k=1∞ Cos [3 k t]  k2 = F0 ∑
k=-∞,k≠0

+∞
Exp [ⅈ 3 k t]  2 k2 .

The series is the 2π/3-periodic extension of f, on [0, 2π/3[defined by

f [t] = F0 (3 t - π)2 /4 - π2/12).

The function is continuous and piecewise continuously differentiable.

With the periodic transfer function having the Fourier coefficients 1/P(ⅈ 3 k) (the basic

angular frequency is now 3 rad / s, the according period T=2π/3 s) the periodic solution u can

immediately be written in the form of a Fourier series. It is

 u[t] = ∑
k=-∞,k≠0

+∞
F0 ⅇⅈ3kt  2 k2 P[ⅈ 3 k].

For illustration purposes and to save excessive calculation time, we will content ourselves

with a partial sum of the series for the force as an approximation and a corresponding

trigonometric polynomial as an approximation for the solution. We plot over three periods

of the excitation and of the solution. The amplitude attenuations and phase delays of all

32 Fourier Analysis with Mathematica 1

partial oscillations interact in the resulting pendulum motion and, as usual, the solution is

characterized by smoothing, which is caused mathematically by the periodic convolution, is

"less angular" than the excitation and has significantly less power than the excitation.

Physically speaking, the cause of this smoothing lies in the mass inertia: due to its inertia, the

mass can no longer follow the excitation frequency after just a few harmonics due to its

inertia.

Therefore, for physical considerations, even a few members of the Fourier series solution in

the analysis of damped oscillations, as in the example, are sufficient to very good

approximations of the "exact" solution. Simply compare the approximate solutions with

only 5 as in the following and up to 100 or 500 summands of a partial sum of this solution.

In[]:= F[t_] := F0 SumExp[-ⅈ n 3 t]  2 n2 + Exp[ⅈ n 3 t]  2 n2 , {n, 1, 5}
u[t_] := F0 SumExp[-ⅈ n 3 t]  2 n2 P[-ⅈ 3 n]+ Exp[ⅈ n 3 t]  2 n2 P[ⅈ 3 n], {n, 1, 5}
g1 := Plot[u[t], {t, 0, 2 π}, PlotStyle → Directive [

Red, Thickness [0.008]], PlotRange → All, PlotLabels → Style["u[t]", 12]]

g2 := Plot[F[t],

{t, 0, 2 π}, PlotStyle → Directive [Blue, Thickness [0.008]],

PlotRange → All, PlotLabels → Style["F[t]", 12]]

Show [g1, g2]

Out[]=

u[t]

F[t]

1 2 3 4 5 6

-0.1

0.1

0.2

0.3

For comparison the mean squares (squares of the L2 -Norms, Powers of force and resulting solution,

showing the loss of power:

In[]:= NIntegrate Abs[F[t]]2  (2 π / 3), {t, 0, 2 π / 3} (* system input *)

NIntegrate Abs[u[t]]2  (2 π / 3), {t, 0, 2 π / 3} (* system output *)

Out[]= 0.021607

Out[]= 0.000276477

Summary: All the considerations and calculations carried out here for the pendulum as an

example can be applied analogously to stable time-invariant linear transmission systems,

which are described by differential equations as above (also of higher orders).

In electrical engineering, they are the basis on which a subject such as “AC calculations ”

(alternating current calculations) with the concepts of frequency, amplitude and phase

response and the quantities derived from these such as the “group delay” make sense in the

first place, as real signals hardly ever have a pure sine shape, but if they are time-limited in a

time interval [0,T], they can be understood and treated with the theory of Fourier series.

Fourier series are therefore a valuable theoretical tool for describing a large number of pro-

cesses in technology.

Chapter 2 Application of Fourier Series to Linear Differential Equations 33

2.2 Fourier series in homogeneous 1D Heat Equations

Example 3. A homogeneous heat conduction equation with homogeneous boundary

conditions.

The initial boundary value problem for the homogeneous heat conduction equation for a

(thermally thin) rod of length L, whose ends are ice-cooled, described as the interval [0,L]

and an initial temperature f[x] in x ϵ [0,L], is given by the coefficient a for the thermal diffusiv -

ity (see textbooks on physics)

 ∂t u[x, t] = a ∂x,x u[x, t] , u[x, 0] = f [x], u[0, t] = u[L, t] = 0 for all t ⩾ 0.

With a separation approach u[x,t]=v[x] w[t] one obtains -quite analogous to the solution of

the differential equation for the vibrating string in [1], p. 2-4 and exercise A8 in [1], 5.7) - the

Fourier series solution u[x, t] = ∑
n=1

∞
bn ⅇ-λn

2
t

Sin [nπx /L] with the Fourier sine coefficients of the

2L-periodic odd extension of f and λn = n π a L .

It has a uniformly convergent Fourier series. For demonstration, we choose L=1 m and f as a

parabolic arc f[x]=5x(L-x) in C0 (degrees Celsius) and the thermal diffusivity

a = 117 · 10-6 m2  s of copper at about 20 C0 . In the following, we calculate the Fourier coeffi -

cients of f and plot an approximation as a 3D graph that illustrates the temperature equaliza -

tion in the rod for t>=0.

In[]:= Clear ["Global` *"]; L := 1;

f[x_] := 40 x (L - x); a := 117 × 10 ^ (-6);

b[n_] = 2 / L Integrate [f[x] Sin[n Pi x / L], {x, 0, L}]

Out[]= -
80 × (-2 + 2 Cos[n π] + n π Sin[n π])

n3 π3

Here is a Fourier series approximation for the solution as a trigonometric polynomial of

degree m and a representation with m=4. It decreases (slowly) to zero with increasing time:

34 Fourier Analysis with Mathematica 1

In[]:= u[m_, x_, t_] := Sum[b[n] Exp[-(n Pi Sqrt[a] / L)^ 2 t] Sin[n Pi x / L], {n, 1, m}]

Plot3D u[4, x, t], {x, 0, L}, {t, 0, 3600},

PlotRange → All,

AxesLabel → " Position x in m ", " Time t in s ", " Temperature u in C0 ",
AxesStyle → Directive [Black , 12], ViewPoint → {-3, 2, 3}, ImageSize → Medium 

Out[]=

Chapter 2 Application of Fourier Series to Linear Differential Equations 35

Example 4. Now to the same problem with Neumann boundary conditions , i. e., physically

with insulated bar ends, so that no heat flows over the edge, mathematically

∂x T [0, t] = ∂x T [L, t] = 0 for the temperature T[x,t].

We solve the problem step by step analogous to the procedure behind the solution (for own

work) in the previous example. The separation approach u[x, t] = v[x] w[t] leads to two ordi-

nary differential equations v'' + cv = 0 and w' + αcw = 0 and the boundary condition v'[0] = 0,

v'[L] = 0 (the thermal diffusivity is now denoted by α , the temperature by T) :

With a separation approach, insertion into the equation and the boundary conditions we

obtain for

 ∂tT[x, t] -α ∂x,xT[x, t] = 0 and ∂x T [0, t] = ∂x T [L , t] = 0 :

In[]:= sol1 = DSolve [{ v ''[x] + c v[x] ⩵ 0}, v[x], x]

Out[]= v[x] → 1 Cos c x+ 2 Sin c x
In[]:= v[x_] = sol1〚1, 1, 2〛
In[]:= 1 Cos  c x + 2 Sin  c x

Out[]= 1 Cos  c x + 2 Sin  c x

We insert the boundary condition into the solution part v and obtain from v'[0] = 0 that 2

must be zero, if c > 0. (For c < 0 there is only the trivial solution).

In[]:= v '[0]

Out[]= c 2

It remains v' [L] = - C[1] c Sin[c L]=0.

The resulting possibilities for the constant c have the form

 cn = n2 π2  L2 for c , which provide all solutions .

In[]:= Solve [Sqrt[c] L ⩵ n Pi, c]

Solve : Solutions may not be valid for all values of parameters .

Out[]= c → n2 π2
First result: A sequence of possible solutions vn[x] , n=1,2, ..., vn[x] = an Cos cn x, fulfill -

ing all boundary conditions.

Now, to the second part of the separation approach:

In[]:= sol2 = DSolve [w '[t] + α n ^ 2 Pi ^ 2 / L ^ 2 w[t] ⩵ 0, w[t], t]

Out[]= w[t] → ⅇ-n2 π2 t α 1
We now obtain a Fourier series solution by superposition and write down a section of the

solution series of degree m2

(T[x, t] = c0 is also a solution):

T[m1_ , m2_ , x_, t_] = c0 + Sum  a[n] Exp  - α n2 π2 t

L2
 Cos [n π x /L], {n, m1 , m2 }

According to the given initial condition, the a[n] must therefore be the Fourier cosine coeffi -

cients of the initial condition f, c0 is the mean value of f. Using the same data as in the first

example, we calculate and plot the approximate temperature curve with the partial sum of

degree 8. With varying parameters m1, m2 you can see the development of sections of the

36 Fourier Analysis with Mathematica 1

series.

In[1]:= Clear ["Global` *"];

L := 1;

f[x_] := 40 x (L - x);

alpha = 117 × 10^ (-6);

a[n_] = N[2 / L Integrate [f[s] Cos[n Pi s / L], {s, 0, L}]]

c0 = 1 / L Integrate [f[s], {s, 0, L}]

Out[5]= -
2.58012 × 3.14159 n + 3.14159 n Cos [3.14159 n] - 2. Sin [3.14159 n]

n
3

Out[]=

20

3

You can recognize an extensive temperature equalization after about 10 minutes in the

entire rod.

As the time increases, the temperature converges everywhere towards the average value

c0=20/3 C0 of f, as can be seen from the solution series . Here the temperature after 600 s and

the mean value of f :

In[7]:= T[m1_ , m2_ , x_, t_] :=

c0 + Sum[a[n] Exp[-alpha n ^ 2 Pi ^ 2 t / L ^ 2] Cos[n Pi x / L], {n, m1, m2}]

Chapter 2 Application of Fourier Series to Linear Differential Equations 37

In[]:= p0 = Plot3D [N[T[1, 8, x, t]], {x, 0, 1}, {t, 0, 600},

PlotRange → All, AxesLabel → {"x", "t", "Temperature "},

AxesStyle → Directive [Black , 10],

ViewPoint → {-1, 2, 2}, Ticks → {{0, 1}, {0, 200, 400, 600}, {2, 6, 10}}]

Out[]=

In[]:= p1 = Plot[T[1, 8, x, 600], {x, 0, L}, PlotStyle → Directive [

Red, Thickness [0.008]], PlotRange → All, PlotLabels → Style["T[1,8,x,600]",

p2 = Plot[c0, {x, 0, L}, PlotStyle → Directive [

Blue, Thickness [0.01]], PlotRange → All, PlotLabels → Style["mean of f", 12

p2a = Show [p1, p2]

Out[]=

T[1,8,x,600]

mean of f

0.2 0.4 0.6 0.8 1.0

6.5

6.6

6.7

6.8

6.9

The following is a simple animation for temperature equalization using Mathematica over

the course of 2 minutes. Since we are calculating with an approximate sum for the initial

condition, the boundary temperature is not exactly zero at the beginning, as a partial sum

for the 2 - periodically extended parabolic arc never reaches into the edges. You can use the

38 Fourier Analysis with Mathematica 1

animation copying it into an own Mathematica notebook and taking it as first sample for

similar purposes.

Animate [Plot[N[T[1, 8, x, t]], {x, 0, 1}, PlotRange → {0, 10},

PlotStyle → Directive [Red, Thickness [0.015]], ImageSize → Small], {t, 0, 120},

AnimationRepetitions → 1, AnimationRate → 20, RefreshRate → 10]

Out[]=

t

0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

Finally, here is a quick test to check that everything is correct. T solves the homogeneous

equation and each partial sum of the Fourier series solution fulfills the boundary conditions

by construction:

In[]:= test = Chop [FullSimplify [∂t T[1, 8, x, t] - alpha ∂x,x T[1, 8, x, t]]]

D[T[1, 8, x, t], x] /. x → 0

Chop [D[T[1, 8, x, t], x] /. x → L]

Out[]= 0

Out[]= 0.

Out[]= 0

Note: Both examples are "unphysical" mathematical models in which no heat exchange with

the environment is taken into account, which would play a role under real conditions.

Example 5. A homogeneous heat equation with inhomogeneous boundary conditions

Consider the problem

 ∂t u[x, t] = k ∂x,x u[x, t] , u[x, 0] = f [x],

u[-π, t] + u[π, t] = 2, ∂x u[-π, t] + ∂x u[π, t] = 0 for t ⩾ 0.

We assume that k>0 and f is continously differentiable in]-π ,π[and compatible with the

boundary conditions , i.e., f(-π)+f(π)=2 and there exist f'(±π) with f'(-π)+f'(π)=0. For simplicity

we set k=1.

This is a mathematical model for the evolution of the temperature u(x,t) at the point x at

time t of a thin rod identified with [-π ,π]. The boundary condition for u says that the mean

temperature at the endpoints is kept at 1, while the boundary conditions for ∂x u mean that

the heat flux at the endpoints is equal in magnitude but with opposite sign, i.e., heat enter -

ing or leaving the rod at both ends at the same rate.

One can prove that the problem has a unique solution u ϵ C 1([-π,π]x[0,∞[)⋂C 2(]-π,π[x]0,∞[)

(cf. [9]). The solution can be obtained with u[x,t]=v[x,t]+1, where v solves the equation

Chapter 2 Application of Fourier Series to Linear Differential Equations 39

∂t v[x, t] = k ∂x,x v[x, t] , so that v[x, 0] = f [x] - 1,

v[-π, t] + v[π, t] = 0, ∂x v[-π, t] + ∂x v[π, t] = 0 for x in [-π, π], t ⩾ 0.

With separation of the variables we obtain as before

In[]:= sol1 = DSolve [{ V ''[x] + c V[x] ⩵ 0}, V[x], x];

In[]:= V[x_] = sol1〚1, 1, 2〛
Out[]= 1 Cos c x+ 2 Sin c x
In[]:= Assuming [c ≥ 0, Solve [{V[-π] + V[π] ⩵ 0, V '[-π] + V '[π] ⩵ 0}, {1 , 2}]]

Out[]= {{1 → 0, 2 → 0}}

In[]:= V[-π] + V[π]
V '[-π] + V '[π]

In[]:= 2 1 Cos c π

Out[]= 2 1 Cos c π
Thus, imposing the boundary conditions we obtain the solution with negative c = -λ ,

λ = -(n + 1 / 2)2, n ϵ ℕ0.

Inserting into the second equation of the separation of variables approach w'[t]=λ w[t]

In[]:= sol2 = DSolve [w '[t] + (n + 1 / 2)^ 2 w[t] ⩵ 0, w[t], t]

solT[t] = sol2〚1, 1, 2〛
Out[]= w[t] → ⅇ-

t

4
-n t-n2 t 1

Out[]= ⅇ-
t

4
-n t-n

2
t 1

we arrive at f(x)-1=v(x,0)= ∑n=0
∞ (Ancos(nx+x/2)+Bnsin(nx+x/2)). We thus can expand f(x) as a

trigonometric series with the basis functions cos(nx+x/2), sin(nx+x/2), n≥0, which build also

an orthogonal system in L2([-π,π]).

We obtain, for example, with f(x)=(x/π) 2 and u=v+1 an approximation u(x,t,m) of degree m

as below

In[]:= f[x_] = (x / π)2

A[n_] = 1 / Pi Integrate [(f[x] - 1) Cos[n x + x / 2], {x, -Pi, Pi}]

Out[]=

x2

π2

Out[]= -
16 × (2 Cos[n π] + (1 + 2 n) π Sin[n π])

(1 + 2 n)3 π3

In[]:= B[n_] = 1 / Pi Integrate [(f[x] - 1) Sin[n x + x / 2], {x, -Pi, Pi}]

Out[]= 0

In[]:= u[x_, t_, m_] := 1 + Sum[

Exp[- t / 4 - n t - n ^ 2 t] (A[n] Cos[n x + x / 2] + B[n] Sin[n x + x / 2]), {n, 0, m}]

In[]:= u[x, t, 5]

40 Fourier Analysis with Mathematica 1

Out[]= 1 -
32 ⅇ-t4

Cos x
2


π 3
+
32 ⅇ-9 t4

Cos 3 x
2



27 π 3
-
32 ⅇ-25 t4

Cos 5 x
2



125 π 3
+

32 ⅇ-49 t4
Cos 7 x

2


343 π 3
-
32 ⅇ-81 t4

Cos 9 x
2



729 π 3
+
32 ⅇ-121 t4

Cos 11 x
2



1331 π 3

Illustration of the solution

In[]:= p1 = Plot[{f[x], u[x, 4, 5], u[x, 10, 5]}, {x, -Pi, Pi},

PlotLabel → "u(x,t,5)", PlotStyle → {Black , Red, Blue}, PlotRange → {0, 1},

PlotLabels → {"t=0", "t=4", "t=10"}, Ticks → {{-π, 0, π}, Automatic }]

Out[]=

t=0

t=4

t=10

-π π

0.2

0.4

0.6

0.8

1.0

u(x,t,5)

In[]:= p0 = Plot3D [u[x, t, 5], {x, -Pi, Pi}, {t, 0, 10},

PlotRange → {0, 1}, AxesLabel → {"x", "t", "Temperature "},

AxesStyle → Directive [Black , 10], ViewPoint → {-1, -2, 1}]

Out[]=

Chapter 2 Application of Fourier Series to Linear Differential Equations 41

2.3 Fourier Series in inhomogeneous 1D Heat Equations

Example 6. We now consider an inhomogeneous problem. For the equation

 ∂t U [x, t] - α ∂x,x U [x, t]=G[x,t]

with the right-hand side G we choose a heat flux density that is constant over time, so that

G[x,t]= 0.6 (UnitStep[x-L/4]-UnitStep[x-3L/4]) (in C 0/s). We also choose as initial condition

U[x,0]=0 for x in [0,L] and as last Neumann boundary conditions. The model describes a

uniform heating of our copper rod around the center of the rod, which is otherwise thought

to be perfectly insulated. (Temperature now denoted as U, so that - as long as the animation

above is still running - there is no naming conflict).

We start with an approach using "variation of the constants", i.e., we use the solution

approach

U[x,t] = c0[t]+ ∑n=1
∞ cn[t] Cos[nx/L] , insert this into the equation and use the boundary and

initial conditions (please carry out for practice).

This results in cn ' [t] + (α n ^ 2 π^ 2) / L ^ 2 cn[t] = gn for n>0, c0[t] = g0 t. The constants gn

denote the Fourier cosine coefficients of the inhomogeneity G, g0 the mean value of G. Calcu -

lation for G[x,t] with L=1 m and α :=117 10^(-6) m^2/s as above results in c0[t] = g0 t

(from c0' [t] = g0 and c0[0]=0).

In[8]:= L = 1;

G[x_] = 6 / 10 (UnitStep [x - L / 4] - UnitStep [x - 3 / 4 L])

g[n_] = 2 / L Integrate [G[x] Cos[n Pi x / L], {x, 0, L}]

g0 = 1 / L Integrate [G[x] , {x, 0, L}]

Plot[G[x], {x, 0, L}, PlotLabel → "G[x]", ImageSize → Small]

Out[9]=

3

5
-UnitStep - 3

4
+ x+ UnitStep - 1

4
+ x

Out[10]=

6 -Sin n π
4
+ Sin 3 n π

4


5 n π
Out[11]=

3

10

Out[12]=

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

G[x]

In[13]:= sol := DSolve [

{D[c[n, t], {t, 1}] + α n ^ 2 Pi ^ 2 / L ^ 2 c[n, t] ⩵ g[n], c[n, 0] ⩵ 0}, c[n, t], {n, t}]

42 Fourier Analysis with Mathematica 1

In[14]:= ccoeff [n_, t_] = sol〚1, 1, 2〛

Out[]= -

6 ⅇ-n
2 π 2

t α -1 + ⅇn2 π 2
t α  Sin  n π

4
 - Sin  3 n π

4


5 n
3 π3 α

We consider a partial sum of the Fourier series of the exact solution for the problem and plot

it. Only every fourth Fourier coefficient is non - zero. In order to reproduce the step - like

inhomogeneity well, we choose a higher order (m = 30) of the trigonometric polynomial to

approximate the heat flux density and a corresponding order of the trigonometric approxima -

tion polynomial for the solution. The "step form" of the initially inhomogeneity remains

largely intact in the solution for quite some time before the heat balance takes effect.

In[15]:= α = 117 × 10 ^ (-6);

U[m_, x_, t_] := g0 t + Sum[ccoeff [n, t] Cos[n Pi x / L], {n, 1, m}]

Plot3D N[U[30, x, t]], {x, 0, L}, {t, 0, 600},

PlotRange → All, AxesLabel → "Position x in m ", " Time t in s ", "U in C0 ",
AxesStyle → Directive [Black , 12], ViewPoint → {-2, 2, 3},

Ticks → {{0.0, 0.5, 0.75}, {60, 180, 300, 600}, {0, 100, 200, 300}}

Out[17]=

Here again the temperature evolution as an animation.

A mathematically precise treatment of differential equations with discontinuous right-hand

sides, such as G here, is possible within the framework of distribution theory (see[1]).

In the right graphics the temperature development is shown, smoothed by arithmetic averag -

ing of the partial sums of the result at some distance from the directly heated interval

[L/4,3L/4]. We see an approximately linear increase in the temperature, which becomes

stronger as you move closer to the interval that is heated (Test it yourself.) Here we look at

Chapter 2 Application of Fourier Series to Linear Differential Equations 43

x=L/5:

In[]:= a1 = Animate [Plot[N[U[30, x, t]], {x, 0, 1}, PlotRange → {-2, 260},

PlotStyle → Directive [Blue, Thickness [0.015]], ImageSize → Small], {t, 0, 600},

AnimationRepetitions → 1, AnimationRate → 5, RefreshRate → 50];

Usmoothed [m_, x_, t_] :=

g0 t + Sum[ccoeff [n, t] (1 - n / (m + 1)) Cos[n Pi x / L], {n, 1, m}]

a2 = Plot[N[Usmoothed [30, L / 5, t]], {t, 0, 600}, PlotRange → {0, 200},

PlotStyle → Directive [Blue, Thickness [0.008]],

PlotLabels → Style["U[30,L/5,t]", 12]];

GraphicsRow [{a1, a2}]

Out[]=

0.2 0.4 0.6 0.8 1.0

50

100

150

200

250

U[30,L/5,t]

0 100 200 300 400 500 600

50

100

150

200

And the final test that everything is correct: The mean temperature after 600 s corresponds

to the heat supplied corresponding to 0.3 C 0/s on average for the whole rod with the

assumed perfect insulation and the differential equation as well as the initial and the bound -

ary conditions are fulfilled:

In[]:= 1 / L Integrate [U[30, x, 600], {x, 0, L}]

test = Chop [Simplify [

∂t U[30., x, t] - α ∂x,x U[30, x, t] - (g0 + Sum[g[n] Cos[n Pi x / L], {n, 1, 30}])]]

D[U[30, x, t], x] /. x → 0

D[U[30, x, t], x] /. x → L

Out[]= 180

Out[]= 0

Out[]= 0

Out[]= 0

44 Fourier Analysis with Mathematica 1

2.4 Fourier Series Solution for the Potential Equation on a Circular Disk

The potential equation on a circular disk of radius R>0 is given in polar coordinates by

Δu =
∂²
∂r²

u +
1

r

∂
∂r

u + 1

r²

∂²

∂ϕ²
u for 0< r <R.

For a given boundary condition u(R,ϕ)=U(ϕ) with the Fourier coefficients ck (0≤ϕ<2π) the

equation has the unique Fourier series solution u(r,ϕ)=∑k=-∞
+∞

ck (r/R) k ⅇⅈkϕ . The solution

has no local extrema in the interior of the disk, it attains minimum and maximum at the

boundary.

(For Details see [1], section 5.3).

Example 7. As an example, we illustrate the solution for the simple boundary condition

U(ϕ)=cos(ϕ)+2 sin(2ϕ) for R=2 with two possible representations.

First a “conventional” view with a Cartesian x,y,z coordinate system. The polar coordi -

nates are transformed to Cartesian in the plot, i.e.,

r=Sqrt[x^2+y^2], phi=Arg[x+I y].

In[]:= R := 2;

u[r_, phi_] =

(r /R Cos[phi] + 2 (r /R)^ 2 Sin[2 phi]) (HeavisideTheta [r] - HeavisideTheta [r - R])

Out[]= (-HeavisideTheta [-2 + r] + HeavisideTheta [r])
1

2
r Cos[phi] +

1

2
r2 Sin[2 phi]

In[]:= Plot3D [u[Sqrt[x ^ 2 + y ^ 2], Arg[x + I y]], {x, -2, 2}, {y, -2.1, 2.1},

PlotRange → All, Boxed → False , PlotStyle → Directive [Normal], Axes → True,

AxesLabel → {"x", "y", " u[x,y]"}, AxesStyle → Directive [Black , Plain, 14],

RegionFunction → Function [{x, y, z}, x ^ 2 + y ^ 2 ≤ R], ViewPoint → {0.5, -3, 0.5}]

Now the same illustrated with a rectangular r,ϕ coordinate system , which better shows the

boundary function for r=R=2 and that there are no local extremal values of u in the interior

of the circular disk. You can change the view and size by dragging the image with your

mouse.

Chapter 2 Application of Fourier Series to Linear Differential Equations 45

In[]:= p1 = Plot[Cos[ϕ] + 2 Sin[2 ϕ], {ϕ, 0, 2 Pi},

ImageSize → Small , PlotLegends → {"U[ϕ]"}];
min = FindMinimum [Cos[ϕ] + 2 Sin[2 ϕ], ϕ];
p2 = Plot3D [{u[r, phi], min}, {r, 0, R}, {phi, 0, 2 Pi }, PlotRange → {-3, 3},

AxesLabel → {"r", "ϕ", "u[r,ϕ]"}, AxesStyle → Directive [Black , Plain, 12]];

Show [p2]

Show [p1]

1 2 3 4 5 6

-3

-2

-1

1

2

3

U[ϕ]

If the equation describes physically a Dirichlet problem for heat conduction with a given

time-independent temperature U(ϕ) on the boundary, then the solution is the stationary

temperature of the disk generated by the boundary temperature.

46 Fourier Analysis with Mathematica 1

2.5 An Initial Boundary Value Problem for a Force-Free Vibrating String

In the following we show the solution for a force-free vibrating string of length L according

to the equation

 ∂²

∂ t²
u = c2 ∂²

∂x²
u

with initial condition u(x,0)=f(x) and boundary conditions u(0,t)=u(L,t)=0 for all t.

The solution u(x,t) is the transversal displacement of the string at x and time t. The constant

c is the velocity of the wave.

By separation of the variables one can find the unique solution in the form of a Fourier series

provided the oddly periodically extended initial condition f(x)=∑n=1
∞ an sin(nπx/L) is twice

continuously differentiable on the entire axis ℝ and f''' is piecewise continuous. For the

derivation of this, please see [1], 1.2 and 5.4.

The Fourier series of the solution is then

 u(x,t)= ∑n=1
∞ an sin(nπx/L) cos(cnπt/L),

where the constants an are the Fourier sine coefficients of f.

By the trigonometric addition theorems D'Alembert's representation of the solution can be

obtained as (see again [1], 5.4) as

 u(x, t) =
1

2
(f(x-ct)+f(x+ct)).

Thus, the solution is a superposition of two waves with the shape of f, which move in

opposite directions with velocity c and are reflected at the string ends with opposite phase.

Example 8. We illustrate the solution for a smooth initial condition f

First we set up the initial condition as function on the line from -3L to 3L. Then we extend it

to an odd 6L-periodic function on the line. We plot the solution for x and t over 2 time units

showing the superposition and reflection at the string ends. We use D’Alembert’s representa -

tion, because it is hardly possible to calculate f and u as Fourier series.

Chapter 2 Application of Fourier Series to Linear Differential Equations 47

In[]:= Clear ["Global` *"];

h[x_] = Piecewise [{{Exp[-1 / (1 - x ^ 2)], x < 1 && x > -1}, {0, x ⩾ 1 && x ⩽ -1}}];

f1[x_] = h[4 x - 2]; L := 1;

f[x_] = f1[x] - f1[x + 1] + f1[x + 2] - f1[x + 3] - f1[x - 1] + f1[x - 2];

(* this is an odd extension from -3l to 3L *)

ic = Plot[f[x], {x, -3 L, 3 L}, PlotRange → All,

PlotLegends → Placed [{"Initial f"}, Above], ImageSize → Small];

c = 1;

u[x_, t_] = 1 / 2 (f[x - c t] + f[x + c t]);

sol = Plot3D [u[x, t], {x, 0, L}, {t, 0, 2}, PlotRange → All, AxesLabel →
{"x", " Time t", "u[x,t]"}, AxesStyle → Directive [Black , Plain, 12]];

GraphicsRow [

{ic,

sol}]

Out[]=

Problem: Since it is not that easy to provide smooth initial conditions and their Fourier

series expansions, it is desirable to work with simple mathematical models as initial condi -

tions and later as right hand sides for inhomogeneous equations. We show an example with

a piecewise linear function f and will readily recognize that one does not obtain solutions in

the classical sense, because these are no more differentiable functions. The question then is,

what they mean as solutions of second order differentiable equations. These questions could

not be solved until the mathematical progress from classical theory to distribution theory.

Distribution theory was developed about 1935 by S. L. Sobolev (1908-1989), in the years

1945-1950 by L. Schwartz (1915-2002) and others. There, the concept of generalized deriva -

tives and of generalized solutions is introduced, also called weak solutions for differential

equations. This allows much easier calculations and has opened up a myriad of applications

in mathematics and all other scientific areas.

We will discuss this in a subsequent booklet. Here, we illustrate the problem with a piece -

wise linear initial condition, which could be a simple model of an initially deflected string,

which is the released.

48 Fourier Analysis with Mathematica 1

Example 9. A simple model for an initially deflected string and the “solution” of the initial

boundary value problem

Clear [f , f1, x, t];

f1[x_] := 2 x (UnitStep [x + 1 / 4] - UnitStep [x - 1 / 4]) +

2 × (1 - x) / 3 (UnitStep [x - 1 / 4] - UnitStep [x - 1]) -

2 / 3 (x + 1) (UnitStep [x + 1] - UnitStep [x + 1 / 4]);

pf1 = Plot[f1[x], {x, 0, 1}, PlotLegends → Placed [{"Initial condition f"}, Above],

PlotRange → All, ImageSize → Small];

f[x_] := f1[x + 2] + f1[x] + f1[x - 2]; (* extension as periodization *)

string [x_, t_] := 1 / 2 (f[x + t] + f[x - t]); (* D'Alembert 's solution form *)

pf2 = Plot3D [string [x, t], {x, 0, 1}, {t, 0, 2}, Mesh → 30,

ColorFunction → "AvocadoColors ", Axes → {True, True, False },

Ticks → {{0, 0.25, 1}, {0, 2}}, Boxed → False ,

AxesLabel → {"Position x", "Time t"}, ViewPoint → {1.5, -2, 3},

AxesStyle → Directive [Black , Plain, 12]];

GraphicsRow [{pf2, pf1}]

You clearly observe that this solution is not differentiable and thus cannot be a solution in

the classical sense. We come back to the problem, once we have seen how the theory of

distributions can overcome these problems in classical theory. Distribution theory was a

major step in Applied Mathematics solving linear problems, that had existed for centuries.

Distribution theory offers new methods with algorithms for solving numerically uncount -

able problems in science and engineering.

Chapter 2 Application of Fourier Series to Linear Differential Equations 49

2.6 Solution of a Kepler Equation by Fourier Series Expansion

Kepler’s equation for the eccentric anomaly

Kepler’s equation (J. Kepler 1571-1630) for the elliptic orbit of a planet P is

 ϕ(t)-ϵ sin(ϕ(t))=ωt (1).

Here, ω=2π/T is the angular frequency with orbital period T , 0⩽ϵ<1 the eccentricity of the

ellipse and ϕ(t) the eccentric anomaly at time t (see Fig. below).

For all t ϵ ℝ the following is valid:
ⅆϕ
ⅆt

(t) = ω/(1-ϵ cos(ϕ(t)) > 0. Furthermore, ϕ(0)=0 and

ϕ(T)=2π . Therefore, ϕ(t) is monotonically increasing with t and sin(ϕ(t)) must be an odd

function of t due to the motion’s symmetry. This motivates the solution approach

ϕ(t)=ωt+∑k=1
∞ bksin(kωt). This solution by Fourier series expansion goes back to J. L.

Lagrange and F. W. Bessel. To obtain the coefficients bk we transform the according integral:

bk =
4

T ∫0

T /2ϵ sin(ϕ) sin(nωt) ⅆ t

 = -
4 π sin(ϕ) cos(nωt)

nωT 0
T /2

 +
4

nωT ∫0

T /2
cos(nωt)

ⅆ
ⅆt
(ϵ sin(ϕ)) ⅆ t

through integration by parts. Thus, with ϕ(T/2)=π and differentiation of (1) above and with

substitution ϕ=ϕ(t)

bk =
4

nωT ∫0

T /2ϕ• -ω cos(nωt) ⅆ t =
2

nπ ∫0

π
cos(nωt) ⅆϕ

 =
2

nπ ∫0

π
cos(n(ϕ- ϵ sin(ϕ)) ⅆϕ =

2

n
Jn(nϵ)

Here Jn is the Bessel function of the first kind implemented in Mathematica as BesselJ[n,z]. It

can be evaluated to arbitrary numerical precision.

50 Fourier Analysis with Mathematica 1

Example 10. Eccentricity and orbit of Halley’s Comet

We show a plot of a ϕ(t) with the eccentricity ϵ=0.967 of Halley's Comet by a partial sum of the

computed Fourier series.

In[]:= eps = 0.967 ;

T = 75;

ω = 2 Pi / T;

approxKeppler [t_] = ω t + Sum[2 / n BesselJ [n, n eps] Sin[n ω t], {n, 1, 30}];

Plot[{ω t, approxKeppler [t]}, {t, 0, 75}, Axes → True,

AxesLabel → {"years ", None }, Ticks → {{0, T / 2, T}, {0, 2 Pi}}]

Out[]=

75

2
75

years

2 π

On the following page the corresponding orbit of Halley’s Comet with its astronomical data

and the approximation from above. A picture of the comet presented on NSSDC’s Photo

Gallery, NASA ID LSPN-1725 is also shown at the cover page of this title.

In[]:= eps = 0.967 ;

a = 17.834 ;

b = a Sqrt[1 - eps ^ 2];

y[x_] = b / a Sqrt[a ^ 2 - x ^ 2];

e = Sqrt[a ^ 2 - b ^ 2];(*astronomical data*)

xpos[t_] = a Cos[approxKeppler [t]];

ypos[t_] = b Sin[approxKeppler [t]];(* position according to the approximation

with the above Fourier partial sum with the Bessel functions *)

p1 = Plot{y[x], -y[x]}, {x, -18, 18}, AspectRatio → Automatic , PlotStyle →
{Brown , Brown }, PlotLegends → Placed "Orbit of Halley 's Comet ,

in blue from t=0 to t=2 years starting from aphelion ,

AU about 150x106 km, the red focus is the sun", Above ,
Axes → True, AxesLabel → {AU, AU};

p2 = Graphics [{PointSize [Large], Red, Point [{-e, 0}]}];

(*plot of the focus *)p3 = ParametricPlot [{xpos[t], ypos[t]},

{t, 0, 2}, PlotStyle → {Blue, Thick }, AspectRatio → Automatic];

(* orbit within 2 years starting from aphelion *)

Chapter 2 Application of Fourier Series to Linear Differential Equations 51

In[]:= Show [p1, p2, p3]

Out[]=

Orbit of Halley 's Comet ,

in blue from t=0 to t=2 years starting from aphelion ,

AU about 150x106 km, the red focus is the sun

-15 -10 -5 5 10 15
AU

-4

-2

2

4

AU

Finally the photography of Comet 1P/Halley as taken March 8, 1986 by W. Liller, Easter

Island, part of the International Halley Watch (IHW) Large Scale Phenomena Network, NSSD-

C’s Photo Gallery, NASA ID LSPN-1725.

Out[]=

Further examples for Fourier series in linear differential equations can be found in the exercises and their

solutions in [1], chapter 5, and in [10].

52 Fourier Analysis with Mathematica 1

2.7 Solving a 2D Poisson Equation for a Rectangular Membrane by a

 Ritz-Galerkin Solution with Trigonometric Functions

In this section we use Fourier series expansions to calculate approximately the deformation of a loaded

rectangular membrane with zero boundary conditions.

In the example, we compute a Ritz-Galerkin-Solution, which is based on the following theoretical set-

ting, where the task is understood as a variational problem leading to a so-called weak solution. We start

with the formulation in terms of Hilbert spaces V, i.e., complete function spaces with a norm ||f|| =

<f|f> 1/2, <.|.> an inner product, f ϵ V. This formulation is also the starting point for the widely used Finite

Element Method (FEM), on which we learn more in the subsequent volume on Fourier Transforms and

Distributions. For details see [1], chapter 9.

Equilibrium State of a Loaded Membrane

Consider a bounded domain Ω in the plane with a piecewise linear boundary δΩ , where an elastic mem-

brane is fixed . Under the influence of an external force acting perpendicular to the plane, the membrane

deflects. The tension due to the fixing is isotropic, so it is described by a scalar quantity k (with the dimen-

sion N/m) . If f denotes the surface density of the force, then for small displacements u in the equilibrium

state it holds

 -k Δ u = f in Ω, u =0 on δΩ .

Here, Δ denotes the Laplace operator . Thus, the equilibrium position is the solution of a Dirichlet bound-

ary value problem. The following considerations can also be translated to electrical potential problems or

stationary heat conduction problems. A derivation of the above fact from Hooke' s law can be found in

works such as [5] R. Courant, D. Hilbert (1993) et al.

Chapter 2 Application of Fourier Series to Linear Differential Equations 53

If the boundary δΩ has a complicated shape, it will not be possible to calculate a solution using the classi-

cal analytical methods. However, a practical solution approach is opened up by distributional considera-

tions . The equation -k Δ u = f is interpreted as an equation between distributions, i . e ., one seeks a

function u in a suitable Hilbert space V, so that - using Cartesian coordinates - for all functions v in V it

holds

 -k <Δ u, v> = k ∫Ωgrad u(x,y) ·grad v(x,y) ⅆ(x,y) = <f,v>.

The first equality follows from the definition of the generalized derivatives of u and v in V (cf .[1], p . 173) .

Since one now has to solve a boundary value problem, one seeks a solution u that is regular and also

allows for speaking about boundary values u=0 on δΩ . According to S. L. Sobolev (1908 - 1989), one seeks

the solution u among those functions v that are square - integrable along with their partial generalized

derivatives on Ω and vanish on the boundary δΩ . The set of all such functions v forms a function vector

space V over R, which is denoted as V = H0
1 (Ω).

Even for complicated domains whose boundary has only minimal regularity properties, this vector space

can be introduced in such a way that it is possible to meaningfully speak of boundary values of its ele-

ments . This is assumed for Ω and V in the following. Two functions in V are identified if they differ only

on a null set . The space V is an example of a function vector space called a Sobolev space. More generally,

Sobolev spaces are vector spaces of regular distributions whose partial derivatives up to a certain order

are also regular. Details about Sobolev spaces and their applications in partial differential equations can

be found, for example, in [6] R. Dautray, J. L. Lions (1992). The needed properties of V = H0
1 (Ω) in the

following are to be found in Appendix B of [1]. The basis for statements on the solvability of the given

problem and also for the construction of numerical approximate solutions in V using later on (see [1] or a

subsequent volume of this booklet) the Finite Element Method is then the following formulation of the

problem:

Formulation of the problem in the Sobolev space V
The force density f is assumed to be square - integrable on Ω , and V is the above described Sobolev space.

Here, in the example we consider a rectangular domain Ω . We seek a function u in V, such that for all v in

V the following holds:

 a(u,v) = l(v)

 a(u,v) = k ∫Ωgrad u(x,y) ·grad v(x,y) ⅆ(x,y)= k ∫Ω(∂
∂x

u
∂
∂x

 v +
∂
∂y

u
∂
∂y

v) ⅆ(x,y)

 l(v) = <f,v> = ∫Ω f(x,y) v(x,y) ⅆ(x,y)

Due to the assumptions, a(u,v)and l(v) are well-defined for all u, v in V. The derivatives involved are to be

understood as generalized derivatives. The boundary condition is included in the problem formulation by

seeking the solution u in the vector space V, whose elements are functions that vanish on the boundary

δΩ.

The solution u is–if it exists–to be understood as a distributional solution and is also called a weak solu-

tion.

Potential Energy and Energy Functional of the Membrane

The current task is closely related to the physical consideration that the equilibrium state of the mem-

brane adjusts so that the total potential energy is minimal. Assuming a linear elastic material behavior

according to Hooke' s law, the deformation energy is proportional to the change in area.

The total potential energy E(v) of the membrane is then given for a displacement v by

54 Fourier Analysis with Mathematica 1

 E(v) = k (∫Ω(1+|grad v(x,y) 2) 1/2ⅆ(x,y) - ∫Ωⅆ(x,y)) - ∫Ω f(x,y) v(x,y) ⅆ(x,y)

For small displacements, one obtains with

 (1+|grad v(x,y) 2) 1/2 - 1 ≈
1
2

|grad v(x,y) 2

the approximation

 E(v) ≈ J(v) =
1
2

a(v,v) -l(v).

The functional J is called the energy functional of the membrane . If there is a function u for which J(u) is

minimal, then u approximately describes the equilibrium position of the membrane. The connection of

the posed boundary value problem with the variational problem of minimizing the functional J is estab-

lished by the following version of a theorem by P. Lax and A. Milgram (see, for example, [6] R. Dautray, J.

L. Lions (1992)). The theorem shows that both problems have a common solution in the Sobolev space V.

Theorem of Lax - Milgram

1. For a function u in V, the equation a(u,v)=l(v) holds for all v in V if and only if J(u) = inf { J(v) | v ϵ V }, i.e .,

if u minimizes the energy functional J.

2. Under the given conditions the energy functional J is bounded below on V, and there is a uniquely

determined function u in V that minimizes J. This function u is thus also the desired distributional solu-

tion of the given boundary value problem.

This result teaches us that not only our exemplary problem, but also other problems of the same type can

be solved in the same way.

Many boundary value problems can be formulated such that one seeks a function u in a function space V

adapted to the respective task, so that an equation of the form a(u,v)=l(v) holds for all v in V. The state-

ments of the theorem then also apply to all such problems for which the essential properties of the vector

space V and for the (problem-dependent) functionals a and l are satisfied.

The Ritz-Galerkin Method

With the work done so far, we have learned how to formulate our boundary value problems, and that its

(weak) solution is to be sought in a vector space V that has the inner product a(u,v) for u, v in V and the

energy norm ||u||a= a(u, u) . This now makes it easy to describe the basics of approximation methods

according to Ritz and Galerkin and later as a special case the finite element principle.

In all vector spaces V where a norm ||f|| of elements f ϵ V is given by an inner product, one obtains an

approximation in a subspace U of V by orthogonal projection of f onto U. The concept of orthogonality is

directly related to the inner product: f, g from V are orthogonal if and only if their inner product is zero.

The orthogonal projection fU of f onto U is an optimal approximation for f ϵ V by an element of U in the

following sense:

 || f - fU || = inf { || f - g || : g ϵ U}

i.e., the norm of the error || f - g|| is minimal among all g ϵ U for g = fU .

The exemplary problem now has an (unknown) solution u in the infinitely-dimensional function vector

space V. In this vector space V, the bilinear form a(u,v) belonging to the problem defines an inner product

and the norm ||.||a for all u, v ϵ V. According to Ritz-Galerkin, one constructs a finite-dimensional sub-

space of VN of V and calculates the orthogonal projection uN of u onto VN with the inner product given

by a(u,v) as an approximation for the sought solution of the posed boundary value problem. Even if the

Chapter 2 Application of Fourier Series to Linear Differential Equations 55

function u remains unknown, its orthogonal projection uN can be determined from the specification of

VN and from the equation a(u,v)=l(v) valid for every v ϵ V. The function uN is called the Ritz-Galerkin

solution belonging to VN . The choice of VN and hence how well a function u ϵ V can be approximated by

functions from VN is crucial for the error || u - uN ||a of the approximation.

To achieve satisfactory numerical results, the specification of the subspace VN and its approximation

properties is the key to the construction of approximate solutions.

The Linear System of Equations for a Ritz-Galerkin Solution

By specifying N linearly independent functions v1 , v2 , . . . , vN in V , a basis of an N -dimensional sub-

space VN of V is determined. The space VN is the set of all linear combinations of the vk , 1 ≤ k ≤ N. Thus,

the Ritz-Galerkin solution uN in VN has a representation of the form

 uN = ∑k=1
N uN ,kvk

with uniquely determined real coefficients uN ,k . The orthogonality relations a(u-uN , vi) = 0 and the

equations a(u, vi)= l(vi) yield a(uN , vi) = l(vi) for 1 ≤ i ≤ N.

With the linearity of the bilinear form a and the above representation of uN , one obtains the linear

system of equations

 ∑k=1
N uN ,k a(vk ,vi) = l(vi)

for the sought coefficients uN ,1, . . . , uN ,N . In matrix form, with column vectors u and l, the task is thus

Task. Determine u ϵ ℝN , so that Au = l is satisfied for

 A = (αi,k) , αi,k = a(vk ,vi) ,

 l = (li) , li = l(vi) for 1 ≤ i ≤ N, 1≤ k ≤ N

The quantities αi,k and li can be calculated from the given functionals a and l and the chosen basis

functions vi . The matrix A is symmetric and positive definite, particularly regular (cf. [1] for details).

In elasticity problems, A is called the stiffness matrix. The uniquely determined solution u = (uN ,1 , . . . ,

uN ,N) of the system of equations yields the desired approximate solution uN of the original problem

a(u,v) = l(v) for elements v in V .

Example 11. A Ritz-Galerkin Solution with Trigonometric Function

We compute with Mathematica the Ritz-Galerkin solution in the described Sobolev space V = H0
1 (Ω) for

the Dirichlet problem on the rectangle Ω =]0,L[x]0,L[.

As basis for a 4-dimensional subspace V4 of V we choose the trigonometric functions

v1(x,y) = L sin(πx/L)sin(πy/L), v2(x,y) = L sin(3πx/L)sin(πy/L),

 v3(x,y) = L sin(πx/L)sin(3πy/L), v4(x,y) = L sin(3πx/L)sin(3πy/L).

56 Fourier Analysis with Mathematica 1

We calculate the solution of the linear equation system. We need only the diagonal elements of the matrix

A, because all off-diagonal elements are zero.

In[]:= v1 = L Sin[π x / L] Sin[π y / L]; v2 = L Sin[3 π x / L] Sin[π y / L];

v3 = L Sin[π x / L] Sin[3 π y / L]; v4 = L Sin[3 π x / L] Sin[3 π y / L];

a11 = k Integrate [Grad[v1, {x, y}].Grad[v1, {x, y}], {x, 0, L}, {y, 0, L}]

a22 = k Integrate [Grad[v2, {x, y}].Grad[v2, {x, y}], {x, 0, L}, {y, 0, L}]

a33 = k Integrate [Grad[v3, {x, y}].Grad[v3, {x, y}], {x, 0, L}, {y, 0, L}]

a44 = k Integrate [Grad[v4, {x, y}].Grad[v4, {x, y}], {x, 0, L}, {y, 0, L}]

Out[]= π2

Out[]= 5 π2

Out[]= 5 π2

Out[]= 9 π2

In[]:= l1 = f Integrate [v1, {x, 0, L}, {y, 0, L}]

l2 = f Integrate [v2, {x, 0, L}, {y, 0, L}]

l3 = f Integrate [v3, {x, 0, L}, {y, 0, L}]

l4 = f Integrate [v4, {x, 0, L}, {y, 0, L}]

Out[]=

4

π2

Out[]=

4

3 π2

Out[]=

4

3 π2

Out[]=

4

9 π2

We set L = 1m, f = 1 N/m2, k = 2 N/m and obtain the Ritz-Galerkin solution u4 of the given Dirichlet

boundary value problem, and compute the deflection at the point (L/2,L/2):

In[]:= L = 1; f = 1; k = 2;

u4[x_, y_] = l1 / a11 v1 + l2 / a22 v2 + l3 / a33 v3 + l4 / a44 v4

Out[]=

4 Sin[π x] Sin[π y]

π4
+

4 Sin[3 π x] Sin[π y]

15 π4
+

4 Sin[π x] Sin[3 π y]

15 π4
+

4 Sin[3 π x] Sin[3 π y]

81 π4

In[]:= u4[L / 2., L / 2.] (* deflection at {L/2,L/2} in m *)

Out[]= 0.0360957

We can finally illustrate this weak solution by a 3D-Plot.

Chapter 2 Application of Fourier Series to Linear Differential Equations 57

In[]:= Plot3D [u4[x, y], {x, 0, 1}, {y, 0, 1}, PlotRange → All,

Mesh → None , ColorFunction → "DeepSeaColors "]

Out[]=

Since Mathematica has numerical methods implemented, we can compare our Ritz-Galerkin solution

with such an implemented method.

We define the given Dirichlet problem with the boundary condition and let Mathematica solve the prob-

lem numerically.

In[]:= Ω = ImplicitRegion [0 < x < L ∧ 0 < y < L, {{x, 0, L}, {y, 0, L}}];

In[]:= ImplicitRegion [0 < x < 1 && 0 < y < 1 && 0 ≤ x ≤ 1 && 0 ≤ y ≤ 1, {x, y}];

In[]:= op = -k Laplacian [solu[x, y], {x, y}] - f ;

In[]:= Γ = {DirichletCondition [solu[x, y] ⩵ 0, True]};

In[]:= DirichletCondition [solu [x, y] ⩵ 0, True];

In[]:= solution = NDSolveValue [{op ⩵ 0, Γ}, solu, {x, y} ∈ Ω]

Out[]= InterpolatingFunction  Domain: 4.19×10-31 , 1., 4.19×10-31 , 1.
Output: scalar



58 Fourier Analysis with Mathematica 1

In[]:= Plot3D [solution [x, y], {x, y} ∈ Ω, PlotLegends → Automatic]

Out[]=

We finally check the difference between the numerical Mathematica solution and our above Ritz-Galerkin

solution with only 4 trigonometric functions in the approximation. It is of order 10-4.

In[]:= solution [L / 2, L / 2]

Out[]= 0.0368355

Plot3D 

solution [x, y] -
4 Sin[π x] Sin[π y]

π4
+

4 Sin[3 π x] Sin[π y]

15 π4
+

4 Sin[π x] Sin[3 π y]

15 π4
+

4 Sin[3 π x] Sin[3 π y]

81 π4
, {x, y} ∈ Ω, PlotLegends → Automatic 

Chapter 2 Application of Fourier Series to Linear Differential Equations 59

Below we see some pictures of great mathematicians, who have contributed essential

parts to Fourier Analysis within the last 250 years.

© All pictures from Wikimedia Commons, in the public domain everywhere.

 Daniel Bernoulli (1700 - 1782) Jean Baptiste Fourier (1768 - 1830)

 Peter G. L. Dirichlet (1805 - 1859) Bernhard Riemann (1826 - 1866)

60 Fourier Analysis with Mathematica 1

3 Discrete Fourier Transforms

In this chapter some fundamental properties of the discrete Fourier transform (DFT)

are explored and applied in examples.

Important aspects are connected with the alias effect. This appears to beginners at

first as a limitation for applications of the DFT, but has in fact a huge advantage when

it comes to modern signal transmission in high frequency bands above the clock rates

of digital devices like mobile phones etc. There, it allows cheap processing without

costly hardware by simply subsampling. We will point out this in the following (see

examples 4 and 5 in 3.1 below).

3.1 Fundamentals on the DFT

In the following, we use the DFT and the DCT in the form as in my textbook [1], i. e.,

an N-point DFT has the prefactor 1/N . The DFT coefficient Ck for a piecewise continu -

ously differentiable f on [0,T[is defined by

Ck=
1

N
∑n=0

N-1 yne-ⅈkn2π/N with yn=f(nT/N). Thus we use the prefactor 1/N here. Other -

wise you would not get the correct amplitudes of a signal.

This prefactor is set in Mathematica with the option FourierParameters->{-1,-1}. The

DFT is already implemented in Mathematica with an FFT algorithm (Fast Fourier

Transform). We consider a first example:

DFT and Frequency Assignment, Handling of Alias Effects

One of the main effects in a DFT is the alias effect, i . e . that in an N - point DFT,

circular frequencies of the form (k + mN)ω0 in the observed signal cannot be distin -

guished (ω0=2 /T, T observation time, m ϵ ℤ).

Example 1. We consider a DFT for f[t] = Sin[8 π t] + Sin[28 π t] with T = 1 s and N = 10

and plot an interpolating polygonal train between the absolute values of the obtained

DFT coefficients . In the Mathematica numbering, the coefficient with the number n

belongs to the DFT coefficient with the number n - 1, if we refer to my notation in[1] .

Here, the coefficients with the numbers 4 and 8 are close to zero. They are due to

numerical rounding errors and should be exactly zero. The values 1 for the numbers 5

and 7 deceive due to the alias effect, and fake a single oscillation of 4 Hz with an ampli -

tude of 2.

In[]:= p1 = Plot[{Sin[8. Pi t], Sin[28. Pi t]}, {t, 0, 1}, ImageSize → Medium];

tab = N[Table [{n / 10, Sin[8. Pi n / 10.]}, {n, 0, 9}]];

p2 = ListPlot [tab, PlotStyle → PointSize [0.03]];

pa = Show [p1, p2];

In[]:= exmpl1 = Table [Sin[8 π n / 10] + Sin[28 π n / 10], {n, 0, 9}];

Abs[Fourier [exmpl1 , FourierParameters → {-1, -1}]];

In[]:= p3 = ListLinePlot [%, PlotStyle → Directive [Blue, Thickness [0.008]],

PlotLegends → {"DFT with T=1,N=10"}];

GraphicsRow [{pa, p3}]

Out[]=

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

DFT with T=1,N=10

You cannot distinguish the two oscillations at the sampling points

The oscillations with 4 Hz and with 14 Hz cannot be distinguished in this DFT, their

amplitudes add up there due to the "undersampling". The symmetry of the DFT

spectrum can also be explained by the alias effect (see[1], 6.1). In the example, a list of

sampled values is generated, which is subjected to an FFT using the Mathematica

command Fourier to perform an FFT. We then plotted a representation of the DFT

magnitude spectrum. A polygonal line is displayed with ListLinePlot, which connects

the magnitudes of the spectral values.

This fact is called the Alias Effect

Given a continuous, piecewise continuously differentiable signal f on [0,T[with the

the limit f(T-) for t->T and a T-periodic extension fp the formula for the alias effect is

 Ck(f) = ∑m=-∞
+∞ ck+mN (fp) +

1

2 N
(fp (0) - fp (T -)). (***)

Here Ck(f) is the k-th DFT coefficient of an N-point DFT of the analyzed signal f, while

ck+mN  fp are the Fourier coefficients of the chosen T-periodic extension fp of f (see [1],

6.1).

To achieve an unambiguous frequency assignment in frequency bands of the form

[mN/(2 T), (m + 1) N/(2 T)] bandpass filters are used in signal processing, which for

the selected integer m ≥0 only allow signal components in the desired frequency

band to pass (cf. [1], 6.1).

The sampling frequency to cover a frequency band of width N/(2T) without aliasing

must be at least N/T. If this condition is fulfilled, the DFT coefficient Ck(f) can be used

as estimate for the Fourier coefficient ck  fp with frequency k/T. Otherwise we have

aliasing.

62 Fourier Analysis with Mathematica 1

Example 2. We test a signal composed with frequencies 40 Hz, 216 Hz and 296 Hz

with a 512-point DFT and T=4. Since this DFT covers only 64 Hz as bandwidth N/(2T),

we are faced with aliasing: The 216 Hz and 296 Hz oscillations are aliased with the 40

Hz oscillation, all amplitudes are added in the DFT coefficients C160 and C352 (my num-

bering = Mathematica number -1). The DFT coefficient C352 represents the Fourier

coefficient C-160 of cos(2π 40t)=cos(ω T 40 t)=cos(π/2 160 t) with ω=2π/T.

In[]:= T = 4;

NN = 512;

f[t_] = Cos[2 π 40 t] + 2 Cos[2 π 216 t] + 2 Cos[2 Pi 296 t];

exmpl2 = Table [f[n T /NN], {n, 0, 511}];

absdft = Abs[Fourier [exmpl2 , FourierParameters → {-1, -1}]];

ListLinePlot [absdft , PlotStyle → Directive [Blue, Thickness [0.005]],

PlotLegends → {"DFT of cos(2π 40t)

with T=4,N=512"}]

absdft〚161〛
absdft〚353〛
1 / 4 Integrate [f[t] Exp[- I 160 Pi / 2 t], {t, 0, 4}] (* with period T=4 as in the DFT,

the Fourier coefficient c160 of the 40 Hz oscillation *)

Out[]=

100 200 300 400 500

0.5

1.0

1.5

2.0

2.5

DFT of cos(2π 40t)

with T=4,N=512

Out[]= 2.5

Out[]= 2.5

Out[]=

1

2

Example 3. What are the non-zero DFT coefficients for the 8 Hz oscillation

2 cos(16πt), when you make a DFT with T=4s, N=20 samples?

Answer: 2 cos(16πt)=2 cos(32 ω0 t) with ω0=2π/T=π/2. Then 32-N=12 and -32+2N=8

yield the according non-zero DFT coefficients C8=ⅈ and C12=-ⅈ.
This gives a 8/T=2 Hz oscillation -2sin(8ω0t) with phase reversal as alias due to under-

sampling. The base band covered by this DFT is only [-2.5 Hz, 2.5 Hz].

The examples so far show the difficulty in analyzing unknown signals with a DFT

without further knowledge on their bandwidth. We now show that the alias effect on

the other hand has enormous advantages for processing of signals in a very high

frequency range.

Chapter 3 Discrete Fourier Transforms 63

Example 4. For EMC radiation measurements in the GHz range, you simply avoid

sampling rates of several gigasamples per second by using bandpass filters.

For example, bandpass filters with a bandwidth of 1 MHz in subbands are available

as analog circuits to achieve the filtering in advance to a DFT.

Then, with only a 512 - point DFT and an observation time of T=0.2 ms per frequency

band, i . e . approximately 2.5 MHz sampling frequency N/T, you achieve a frequency

resolution 1/T of about 5 kHz. The analysis of the subbands in a measurement lab can

then be put together to form an overall picture ("Undersampling Solution for High

Frequency FFT Analysis"). This saves a lot of time and costs for such radiation mea-

surements.

We look at the DFT magnitude spectrum of such an example in a single subband of

width 1 MHz, which shows that the alias effect must be carefully considered when to

make statements with correct frequency assignments.

It is assumed that the signal is in the frequency band [1GHz, 1GHz + 1MHz], e.g.

generated at the output of a corresponding bandpass filter.

In[]:= T = 0.2 × 10 ^ (-3);

NN = 512; (* T observation time, NN number of samples

(NN instead of N here, since N is protected by Mathematica) *)

expml2 = Table [Cos[2 Pi (10 ^ 9 + 5000) n T /NN] +

4 Cos[2 Pi (10 ^ 9 + 25 000) n T /NN], {n, 0, 511}];(* high frequency signal *)

We are therefore looking at the superposition of two high - frequency oscillations in

the GHz range. We then plot the entire DFT magnitude spectrum as a polygonal

curve as well as the relevant parts of it and see how the frequency assignment in the

example has to be done. We have taken only 512 samples of the signal in the time

T = 0.2 ms.

64 Fourier Analysis with Mathematica 1

In[]:= absdft = Abs[Fourier [expml2 , FourierParameters → {-1, -1}]];

p1 = ListLinePlot %, PlotRange → All, PlotStyle →
Directive [Blue, Thickness [0.008]], PlotLegends → Placed "T=0.2 10-3,

N=512", Above ;
list1 = Table [absdft〚n〛, {n, 181, 200}]; (* Extraction of part of the DFT list*)

list2 = Table [absdft〚n〛, {n, 321, 340}];

p2 = ListLinePlot [list1, PlotStyle → Directive [Blue, Thickness [0.008]],

PlotRange → All, DataRange → {181, 200},

Axes → {True, False }, PlotLegends → Placed [{"DFT

section "}, Above]];

p3 = ListLinePlot [list2, PlotStyle → Directive [Blue, Thickness [0.008]],

PlotRange → All, DataRange → {321, 340},

Axes → {True, False }, PlotLegends → Placed [{"DFT

section "}, Above]];

Show [p1]

Show [p2]

Show [p3]

Out[]=

T=0.2 10-3,

N=512

100 200 300 400 500

0.5

1.0

1.5

2.0

Chapter 3 Discrete Fourier Transforms 65

Out[]=

DFT

section

185 190 195 200

Out[]=

DFT

section

325 330 335 340

Frequency assignment: The two "peaks" of height 2 belong to the oscillation with

frequency 10^9 + 25000 Hz and amplitude 4.

In Mathematica, compared to the notation in[1] they have a number increased by 1.

The peaks with numbers 188 and 326 therefore belong - this is where the alias effect

comes into play - to 4 Cos[2 π (10^9 + 25000) t] = 4 Cos[(325 + 390*N)ω0t] with ω0 = 2

π/T = 2 π*5*10^3 rad/s, T = 0.2*10^(-3)s observation time as above, because 187 = -325

+ 512 and (325 + 390*512)*5*(10^3) = 1000025000. The peak with the number 188 in

Mathematica then belongs as an alias to the oscillation component

2 Exp[-I (325 + 390 N) ω0t] = 2 Exp[+I (187 - 391 N) ω0t] in the Fourier series of the T -

periodically extended signal.

In the same way, you can assign the other oscillation frequency corresponding to the

two peaks with the numbers 192 and 322 and the height 1/2. Please carry out the

small analog calculation yourself. In particular, we note that the values associated

with the positive signal frequencies with the numbers 322 and 326 lie in the upper half

of the DFT spectrum, while those with the numbers 188 and 192 are "alias values" of

parts with negative frequencies.

66 Fourier Analysis with Mathematica 1

The alias effect therefore sometimes requires a little thought in order to assign the

DFT line spectra to the correct frequencies. However, if necessary, you can write a

small program for this.

Exercise: Consider (with pencil and paper if necessary) which numbers have the

peaks of a 512-point DFT with Mathematica for an observation time T=0.2*10^(-3) s of

an oscillation with the frequency 1001.06 MHz?

Example 5. (Subsampling in digital transmission systems) A decisive advantage of

the alias effect with a DFT is found in any kind of digital transmission (WLAN, mobile

phones, DVB etc.). The point is that the transmissions take place in very high fre-

quency bands outside the bandwidth of the used digital devices like phones et al.

Since the transmission bands are known at the receiver side, the signals are accord -

ingly undersampled, what automatically can generate the signal spectrum in a lower

frequency band by aliasing. For example, 5G transmissions can use frequency bands

up to 26 GHz, while mobile phones at present have 2.2-2.6 GHz CPU’s. For the digital

signal processing direct IF subsampling receivers (IF, intermediate frequency) can be

used to shift the signal spectrum without analog mixers by the alias effect from a

high to a low frequency band, where the phone signal processing works. This reduces

considerably receiver complexity, power consumption and costs of hardware.

We have seen that the bandwidth of a segment of a signal spectrum by a DFT is deter -

mined by N and T , and thus a segment of the spectrum is representable by a DFT

without aliasing. Not a priori determined is the position of such a spectral part on the

frequency axis. Its position can be determined from a priori knowledge or deliber -

ately. This has disadvantages in observing unknown signals, but also enormous advan -

tages in signal processing for technical systems as for example in communications

engineering. Because there the signals and the allocation of signal frequencies in the

spectrum can be chosen intentionally. Thus, the DFT with subsampling offers the

opportunity to bring a signal spectrum automatically into a frequency band where

device processing works. This is one of the reasons, why digital transmission nowa -

days is so successful and cheap, because otherwise with analog technique you would

need expensive mixers to achieve the same by amplitude modulations. Modern digi-

tal transmission with multi-carrier methods like OFDM transmission in high fre-

quency bands the information in spectra of trigonometric polynomials, which can be

reconstructed with a DFT by aliasing in a desired lower frequency band. This is a

cornerstone in modern communication systems. We can see more on this in [1], 12.3

or in a later booklet on Fourier transforms and the principle of OFDM transmissions

with Mathematica.

Chapter 3 Discrete Fourier Transforms 67

Example 6. (Gain in Computational Effort by Undersampling in the Radio-Fre -

quency Band)

Assume we have signals in the radio-frequency band FM from 87.5 MHz to 108 MHz,

which shall be digitally processed. Sampling with 216 MHz according to the Nyquist

frequency would require an anti-alias lowpass filter with cutoff frequency 108 MHz,

and yield a data stream of 2x216=432 MB/s from a 16 Bit ADC to the signal processing

unit. Undersampling with sampling frequency fs=43.5 MHz shifts the signal spectrum

to [0.5 MHz, 21 MHz]. This would result in a data stream of only 87 MB/s for further

signal processing, which is a gain of about 80% in computation time, compared to 432

MB/s, without the need of a (costly) analogue mixer.

Example 7. (Delayed Sampling, Correction in the Spectrum of Trigonometric Poly -

nomials)

We consider a sampling of

 f(t)=2 Exp[ⅈω0t]+(1+ⅈ)Exp[2ⅈω0t]+(1-ⅈ)Exp[3ⅈω0t] with T=1s, ω0=2π/T.

Assume that the sampling times are tn=nT/N+0.1s with N=4 and n=0,...,N-1.

Then the DFT spectrum undergoes changes, compared to a corresponding one begin -

ning at t=0.

The DFT spectrum of the delayed sampling with the "synchronization error" Δt =0.1s

is

 (0, 1.6180 + 1.1755 ⅈ, -0.6420 + 1.2600 ⅈ, 0.6420 + 1.2600 ⅈ).

Since f is a T-periodic trigonometric polynomial with frequencies only in the pass-

band [0,N/T[, the DFT coefficients Ck of f are simply phase-shifted towards Dk = Ck

zk , z=Exp[ⅈω0Δt }, due to the delayed sampling.

The spectrum can be corrected using known pilots.

If the amplitude A of a "pilot carrier" in a transmitted trigonometric polynomial is

known (here for example A=2 for the carrier frequency 1 Hz), one can recognize the

phase shifts from the obtained DFT coefficient of this carrier and correct the entire

DFT spectrum. In the example, the products Dkz-kwith z=D1/A, k=0,...,3 yield the

true spectrum (0,2,1+ⅈ,1-ⅈ) of f in the frequency band up to 3 Hz (see below).

In[]:= ω0 = 2 π; A = 2;

expml7 = Table [A Exp[ⅈ ω0 (n / 4 + 0.1)
+ (1 + ⅈ) Exp2 ⅈ ω0 (n / 4 + 0.1) + (1 - ⅈ) Exp3 ⅈ ω0 (n / 4 + 0.1], {n, 0, 3}];

dft = Fourier [expml7 , FourierParameters → {-1, -1}]

Out[]= -7.21645 × 10-16 + 7.77156 × 10-16 ⅈ,
1.61803 + 1.17557 ⅈ, -0.64204 + 1.26007 ⅈ, 0.64204 + 1.26007 ⅈ

68 Fourier Analysis with Mathematica 1

Now, we correct the spectrum using the pilot carrier as described above:

In[]:= dftcorrected = Chop [Table [dft〚k〛× (dft〚2〛 / A)^ (-k + 1), {k, 1, 4}]]

(* Observe the index numbers of Mathematica *)

Out[]= {0, 2., 1. + 1. ⅈ, 1. - 1. ⅈ}
In[]:= DeltaT = Arg[dft〚2〛 / A] /ω0

Out[]= 0.1

Of course, from z=Exp[ⅈω0Δt } the time delay Δt =arg(z)/ω0 is obtained as above. In a

transmit-receive scenario with a delay of received signals, where the amplitudes of

transmitted trigonometric polynomials represent the encoded information in a suit-

ably chosen frequency band, the use of known amplitudes on known carriers (prea -

mbles and pilot symbols) is standard in transmissions such as DAB, DVB-T, DSL,

WLAN, LTE, 5G. They are used for synchronization and generally for channel estima -

tion.

Chapter 3 Discrete Fourier Transforms 69

3.2 Application: Estimation of Signal Spectra, Aliasing

As can be seen from the examples above, the DFT can be used to estimate spectra of

unknown signals if knowledge of their bandwidth is available. In general,”truncation

effects” happen due to the time window used in the DFT (see[1]). They are caused,

among other things, by the uncertainty principle (see[1], time-bandwidth product).

We consider signals f on[0,T[, which are continuous with a limit f(T-) and having a

piecewise continuously differentiable T-periodic extension on ℝ. If wT denotes the

rectangular window (UnitStep[t]-UnitStep[t-T]) of duration T, then, due to the alias

effect, the DFT coefficient Ck(f wT) of an N-point DFT for signals f as above compared

with the coefficients ck(f wT) of the Fourier series representation of f wT is given by

 Ck(fwT) = ∑m=-∞
+∞ ck+mN(fwT) +

1
2 N

(f (0) - f (T -)).

Conclusion: If the T-periodic continuation of (f wT) has a jump point at T or if f has

oscillation components with a circular frequency ω≠2πk/T, kϵℤ, then distortions

occur in the DFT compared to the true signal spectrum (see [1], 12.6). The distortions

are referred to in the literature as aliasing and leakage. Let us look at a simple exam -

ple:

Example 8. f1(t)=Cos[t] has a discontinuous T-periodic continuation for T=π .

For the function f2(t)=-Cos(t/2)+Cos(t)/2 the T-periodic extension of f2 · wT is continu -

ous, f2 itself, however, is not T-periodic, but 4π-periodic. We first look at sections of

the graphs of f1 and f1 ·wT , extended T-periodically, and sections of the graphs of f2

and the T-periodic extension of f2 · wT , each with the rectangular window wT , T=π .

In[]:= T := Pi; f1[t_] := Cos[t]; wi[t_] := UnitStep [t] - UnitStep [t - T];

f2[t_] := -Cos[t / 2] + Cos[t] / 2; f1w[t_] := f1[t] × wi[t];

f2w[t_] := f2[t] × wi[t];

In[]:= p1 := Plot[f1[t] - 0.05, {t, 0, 2 T}, PlotRange → All, Frame → False ,

FrameStyle → Directive [Black , FontSize → 18, FontWeight → Plain],

PlotLegends → {"f1-0.05"}, PlotStyle → {Blue, Thickness [0.008]}]

p2 := Plot[f1w[t] + f1w[t - T] + 0.02, {t, 0, 2 T}, PlotRange → All, Frame → False ,

FrameStyle → Directive [Black , FontSize → 14, FontWeight → Plain],

PlotLegends → {"f1wT"}, PlotStyle → {Red, Thickness [0.008]}]

p12 = Show [{p1, p2}, ImageSize → Small](* Shown with

offsets : Here the difference between f1 and the T-periodic extension of f1·wT *)

Out[]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

f1-0.05

f1wT

70 Fourier Analysis with Mathematica 1

In[]:= p3 := Plot[f2[t] - 0.05, {t, 0, 4 T}, PlotRange → All, Frame → False ,

FrameStyle → Directive [Black , FontSize → 18, FontWeight → Plain],

PlotLegends → {"f2"}, PlotStyle → {Blue, Thickness [0.008]}]

p4 := Plot[f2w[t] + f2w[t - T] + f2w[t - 2 T] + f2w[t - 3 T] + 0.03,

{t, 0, 4 T}, PlotRange → All, Frame → False ,

FrameStyle → Directive [Black , FontSize → 14, FontWeight → Plain],

PlotLegends → {"f2wT+0.03"}, PlotStyle → {Black , Thickness [0.01]}]

p34 = Show [p3, p4]

Out[]=

2 4 6 8 10 12

-0.5

0.5

1.0

1.5

f2

f2wT+0.03

Of course, there are large differences to be expected between the DFT spectra and the

true spectra of the periodic signals observed with a rectangular window: First, the

DFT magnitude spectrum of f1 calculated with the rectangular window of duration

T=2π with N=16 points. DFT magnitude spectrum of f1: This clearly shows the signal

circuit frequency of 1 [rad/s]. It corresponds to the peaks at numbers 2 and 16 in the

Mathematica numbering.

In[]:= data1 = Table [N[f1[2 π n / 16]], {n, 16}];

absdft1 = Abs[Fourier [data1 , FourierParameters → {-1, -1}]];

plot1 = ListLinePlot [absdft1 , PlotRange → All,

PlotStyle → {Blue, Thickness [0.008]}, ImageSize → Small ,

PlotLegends → {"DFT of f1wT

T=2π,N=16"}];

The right graphics shows a DFT of f1 with T = π , N = 32 sampling points, and thus the

magnitude spectrum of f1·wT with the rectangular window . You can clearly recognize

the alias effects, which suggest oscillation components with angular frequencies ≠
1[rad/s], if the DFT is used naively and the values are taken at face for signal interpreta -

tion.

Chapter 3 Discrete Fourier Transforms 71

In[]:= data2 = Table [N[f1w[Pi n / 32]], {n, 32}];

absdft2 = Abs[Fourier [data2 , FourierParameters → {-1, -1}]];

plot2 =

ListLinePlot [absdft2 , PlotRange → All, PlotStyle → {Blue, Thickness [0.008]},

ImageSize → Small , PlotLegends → {"DFT of f1wT

T=π,N=32"}] ;

GraphicsRow [{plot1, plot2 }]

Out[]=

2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

DFT of f1w T

T=2π ,N=16

5 10 15 20 25 30

0.1

0.2

0.3

0.4

DFT of f1w T

T=π ,N=32

Now the corresponding DFT representations for f2 and f2wT , in the first case left with

T=8π , i.e., twice the exact period of f2, in the second case right with T=π , in each case

with the rectangular window and N=16 points for the DFT. In the 2nd case, the actual

signal spectrum cannot be estimated correctly (note, for example, the high “DC com-

ponent” with the number 1, which in fact is zero for f2).

In[]:= data3 = Table [N[f2[8 Pi n / 16]], {n, 16}];

absdft3 = Abs[Fourier [data3 , FourierParameters → {-1, -1}]];

plot3 =

ListLinePlot [absdft3 , PlotRange → All, PlotStyle → {Blue, Thickness [0.008]},

ImageSize → Small , PlotLegends → {"DFT of f2wT

T=8π,N=16"}] ;

Let us repeat which frequencies are represented by the DFT peaks:

The peak with number 3 in Mathematica corresponds in my notation above to the

DFT coefficient C2.

The corresponding frequency is k/T with k=2 and our used T=8π , i.e., it belongs to the

frequency ν =1/(4π) of cos(t/2).

Correspondingly, the peak with Mathematica number 5 belongs to the frequency

ν =4/(8π)=1/(2π) of cos(t).

Both magnitudes are halved due to cos(t) =
ⅇⅈt
2

+
ⅇ-ⅈt

2
. The peaks in the upper half of

the DFT spectrum thus represent the complex Fourier coefficients C-2 and C-4 of the

signal f2, aliased to the DFT coefficients C14 and C12 (in my notation).

The same example with T=π is useless, since T is not large enough for the 4π-peri -

odic signal, but shows again the problem in analyzing unknown signals with a DFT:

72 Fourier Analysis with Mathematica 1

In[]:= data4 = Table [N[f2w[Pi n / 16]], {n, 16}];

absdft4 = Abs[Fourier [data4 , FourierParameters → {-1, -1}]];

plot4 =

ListLinePlot [absdft4 , PlotRange → All, PlotStyle → {Blue, Thickness [0.008]},

ImageSize → Small , PlotLegends → {"DFT of f2wT

T=π,N=16"}];

GraphicsColumn [{plot3, plot4 }]

Out[]=

2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

DFT of f2w T

T=8π ,N=16

2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

0.6

DFT of f2w T

T=π ,N=16

Equally problematic is the detection of vibration components with closely neighbor -

ing frequencies, especially if such components have very different amplitudes. Small

amplitude values next to larger amplitude values are obscured by distortion effects of

the DFT, or if the observed signal is superimposed by short - term disturbances. See

the examples in[1] and the relationship between the smoothness properties of the

signal on the one hand and the decay of the magnitude spectrum of periodic func-

tions on the other hand. In practice, attempts are made to obtain the best possible

spectral estimates by long observation periods, high sampling frequencies and a

correspondingly high number of samples and by using weight functions, so-called

time windows. More on this in the next section.

We note: An increase in the observation time (and thus an increase in the number of

samples) improves the frequency resolution 1/T, an increase in the sampling fre-

quency (again with a corresponding increase in the number of samples) increases the

recorded bandwidth. Both effects counteract distortions caused by aliasing and leak-

age. A further tool for such an improvement is the use of use of weighting functions in

the time domain.

Chapter 3 Discrete Fourier Transforms 73

3.3 Leakage, Time Windows

In a DFT with, for instance, an even number N of samples and a time window wT one

uses the DFT coefficient Ck for k=0,...,(N-2)/2 as an approximation for the Fourier

coefficient ck of fwT . For k=(N+2)/2,...,N-1 the coefficient Ck serves accordingly as an

approximation for c-N+k and CN /2 as an approximation for (c-N /2+ cN /2)/2. The corre -

sponding oscillations to the fundamental circular frequency ω0=2π/T

v0(t)=1, v1(t) =ⅇⅈ ω0 t , ..., v(N-2)/2(t)= ⅇⅈ (N-2) ω0 t /2 , vN /2(t) =cos(Nω0t/2),

v(N+2)/2(t) =ⅇ-ⅈ (N-2) ω0 t /2 , ..., vN-1(t)=ⅇ-ⅈ ω0 t

generate an N-dimensional function vector space V in L2([0,T]). We have seen that Ck

contains in sum all Fourier coefficients ck+mN of a T-periodic extension fp of fwT ,

m in ℤ.

For the rectangular window wT , the T-periodic extension of fwT has discontinuities at

t=kT, k in ℤ, if f(0)≠ f(T-).

If the signal f is a mixture of harmonic oscillations with circular frequencies kω0,

k=0,...,N/2, i.e., if f(t)=∑k=0
N-1 αkvk(t) is a linear combination of the functions v0,...,vN-1,

then f(0)=f(T-) and it follows

 Ck =< f | vk > =
1

T
 ∫0

T
f[t] Conjugate [vk [t]] ⅆ t=αk .

The orthogonal projections of f onto the one-dimensional subspaces of V generated

by the functions vk then yield with the DFT coefficients the exact spectral values of f.

That is different, if the periodic extension of fwT has a jump discontinuity at t=T or if

the originally observed signal f contains harmonic oscillations, whose period duration

does not match T. In practice, this will often be the case when analyzing unknown

signals f, which are sampled over an arbitrarily chosen time period. Simple examples

of such cases are given by the functions f1(t)=cos(t) and f2(t)=-cos(t/2)+cos(t)/2, as we

have seen above in the example 8. For T=π , the T-periodic extension of f1wT with the

rectangle window wT has a jump discontinuity at T, while that of f2wT is continuous,

but f2 is not T-periodic.

If fwT (0)≠ fwT (T-), then every T-periodic extension, T=NΔt , of f beyond the interval

[0,T_a], T_a=(N-1) Δt , has jump discontinuities or steep flanks in the vicinities of the

points kT, k in ℤ. From considerations on the asymptotics of Fourier coefficients (cf.

[1]), it follows that the magnitudes of the coefficients ck of a T-periodic extension of

the signal section decrease only slowly for |k|⟶∞. Consequences are aliasing effects

in the coefficients Ck of the discrete Fourier transform. Even if by chance fwT (0)=

fwT (T-) as in the example f2wT , effects arise as soon as f contains oscillation compo -

nents with frequencies ν≠k/T, and also if they lie within the Nyquist interval with the

cutoff frequency N/(2T). Such effects are called leakage effects.

Every signal component with a circular frequency ω1≠ 2πk/T for any k has non-zero

projections in all subspaces of L2([0,T]), which are generated by the functions vk for

k=0,...,N-1, and causes leakage effects:

 < ⅇ ⅈ ω1 t wT | vk > ≠ 0 for all k=0,...,N-1.

74 Fourier Analysis with Mathematica 1

Example 9. Consider for example the signal g(t) = A Exp[ⅈω1t]. Then, for the k-th

Fourier coefficient ck(gwT) of gwT with the rectangle window wT for the interval [0,T[

it can be shown (with the Fourier transforms of gwT , see [1], 11.5 and 12.6)

 ck (gwT) = (-1)k A Exp[ⅈω1t] sin(π k-ω1T/2)/(π k-ω1T/2)

(***)

These coefficients distort the amplitudes and phases of the estimates Ck of signal

components at all frequencies k/T, k⩽ N/2, if ω1≠ 2πk/T.

They contribute as alias effects to all DFT coefficients Ck . They are spread onto the

oscillations at all frequencies k/T (see the next figure). This phenomenon is referred

to in signal processing as the "spectral leakage effect". Additionally, for all Ck , there is

a constant additive component (g(0)-g(T-))/(2N), if the T-periodic extension of gwT

has a jump discontinuity at T.

The spectral leakage effect occurs with modified coefficients ck(gwT) even when using

other window functions wT instead of the rectangular window, and it results from the

uncertainty principle for the time-duration-bandwidth product of the window wT

(see [1], 12.4).

The arrows in the following figure show some absolute weights gk=|ck(gwT)/A|,

through which the amplitude A of gwT is distributed onto the Fourier coefficients

belonging to frequencies 2πk/T adjacent to ω1 by the periodicity induced by wT accord-

ing to (***) above. For the figure the following data are used: T=1, i.e., ω0=2π ,

ω1=5π=15.708, A=1. Shown is |(ℱwT)(ω-ω1)/T|, ℱwT the Fourier transform of wT (see

[1], chapter 10).

Out[]=

Time Windows

We observe that a possibility to mitigate alias and leakage effects is the use of win-

dows wT whose Fourier transforms decay faster than that of the rectangle function.

The faster the decrease of ℱwT(ω) for |ω|→∞ the better is the frequency localization in

fwT. This is a consequence of Heisenberg’s uncertainty principle and properties of

Fourier transforms. These facts are explained in detail in a subsequent booklet on

Fourier transforms with Mathematica (see also [1], chapter 12). From that, it also a

fact that the bandwidth of a window function wT increases, when T becomes smaller.

Chapter 3 Discrete Fourier Transforms 75

Thus, with decreasing T again the decay of ℱwT becomes slower and thus increases

aliasing and leakage. Therefore, when using the discrete Fourier transform, some

fundamental aspects of the interaction between the observation duration T, the prop -

erties of the weighting function wT, and the sampling rate of the DFT must be consid -

ered.

In practice, many different weighting functions wT are used. The use of special win-

dow functions and thus the compromise that must always be made due to the uncer -

tainty principle depends on the aim of the respective application. Criteria besides the

decay wT and the bandwidth of the window include, for example, its energy concentra -

tion in a given frequency band or simple calculation and implementation possibilities

in software applications.

General aspects for choosing a window:

1. One usually chooses a window function wT that is as smooth as possible with sup-

port in [0, T] and wT(0)=wT(T)=0 or a little bit wider. Then, with support in [0,T], the T

-periodic extension of fwT for continuous signals f has no jump discontinuities, and

the aliasing effects described above are reduced, if the Fourier coefficients of this

extension decrease rapidly. One then obtains better estimates with Ck T than with the

rectangular window for the values ℱ f (2πk/T), which are often sought in applications.

2. One chooses the observation duration T to be as long as possible. The smaller T is,

the larger the bandwidth of ℱwT, i.e., the worse the frequency localization.

3. One chooses the number N of samples to be as high as possible. More signal fre-

quencies are then resolved exactly. For fully observed time-limited signals f, "zero

padding" improves the approximations for ℱf .

4. The leakage effect is less significant, the faster the side lobes of |ℱwT| decrease

compared to the main lobe (cf. the preceding image). Therefore, window functions

are often chosen where these side lobes of |ℱwT| decrease rapidly.

Example 10. We consider as an illustrative example the signal f(t) = A cos(2 π ν1t) +B

cos(2 π ν2t) with A=1, B=0.02, ν1=10.25 Hz, ν2=12 Hz.

The figure left shows the discrete Fourier transform with the rectangular window wT ,

T= 2 s, for N=128. The signal frequency ν2 cannot be detected. With the same T and N,

the often-used Hann window wT is used in the middle figure,

wT(t)= 0.5 - 0.5 cos(2πt/T) for 0≤t≤T, and finally the same wT with T=5 s and N=1024

at the right. Displayed are single-sided DFT magnitude spectra.

In[]:= f[t_] = Cos[2 Pi 10.25 t] + 0.02 Cos[2 Pi 12 t]

Out[]= Cos[64.4026 t] + 0.02 Cos[24 π t]

76 Fourier Analysis with Mathematica 1

In[]:= T = 2; NN = 128; list1 = Table [f[n T /NN], {n, 0, NN - 1}];

dft1 = Fourier [list1, FourierParameters → {-1, -1}];

list1a = Table [Abs[dft1〚k〛], {k, 1, 70}];

p1 = ListLinePlot [list1a , PlotRange → All, PlotLegends → Placed [{"T=2,N=128,

rectangle window "}, Above]];

hann [t_] := 0.5 - 0.5 Cos[2 Pi t / T];

fwt[t_] := f[t] × hann [t];

list2 = Table [fwt[n T /NN], {n, 0, NN - 1}];

dft2 = Fourier [list2, FourierParameters → {-1, -1}];

list2a = Table [Abs[dft2〚k〛], {k, 1, 70}];

p2 = ListLinePlot [list2a , PlotRange → All, PlotLegends → Placed [{"T=2,N=128,

Hann window "}, Above]];

T = 5;

NN = 1024;

list3 = Table [fwt[n T /NN], {n, 0, NN - 1}];

dft3 = Fourier [list3, FourierParameters → {-1, -1}];

list3a = Table [Abs[dft3〚k〛], {k, 1, 70}];

p3 = ListLinePlot [list3a , PlotRange → All, PlotLegends → Placed [{"T=2,N=1024,

Hann window "}, Above]];

p4 = GraphicsRow [{p1, p2}];

GraphicsColumn [{p4, p3}]

Out[]=

T=2,N=128 ,

rectangle window

10 20 30 40 50 60 70

0.05

0.10

0.15

0.20

0.25

0.30

T=2,N=128 ,

Hann window

10 20 30 40 50 60 70

0.05

0.10

0.15

0.20

T=2,N=1024 ,

Hann window

10 20 30 40 50 60 70

0.05

0.10

0.15

0.20

0.25

From the DFT result in the third image, the 12 Hz signal frequency can at least be

suspected. Observe also that the amplitudes are diminished by the use of the damp -

ing window function.

Chapter 3 Discrete Fourier Transforms 77

3.4 Inverse Discrete Fourier Transform IDFT, Interpolation with a DFT

 1. Inverse Discrete Fourier Transform IDFT

The DFT is invertible. Its inverse IDFT is given for N samples and duration T with the

DFT coefficients Ck of a function f by

 IDFT yn=f(nT/N)=∑k=0
N-1 Ck Exp[ⅈkn2π/N] for 0⩽n⩽N-1.

For calculations we have the properties of a DFT summarized in the table below,

compared with analog properties of Fourier series. This table is copied from [1],

where also the according proofs can be found. The DFT coefficients Ck are denoted by

ck


 in the table as in [1].

Out[]=

78 Fourier Analysis with Mathematica 1

2. Trigonometric Interpolation

By definition of the DFT we immediately obtain trigonometric interpolation polynomi -

als for functions f on an interval [0,T] with interpolation nodes f(kT/N), k=0,...,N-1.

This means that the IDFT of the DFT list {Ck ,k=0,..N-1} yields the list of samples

{yk=f(kT/N), k=0,..,N-1}, whose DFT is just {Ck , k=0,..N-1}. Thus, we obtain from the

formula for the IDFT that Q(t) yields a trigonometric interpolation polynomial with

Q(t)=∑k=0
N-1 CkExp[ⅈ k 2π t/T] for these interpolation nodes yk . By the alias relation, this

can be written in another form, when the samples and the DFT coefficients are N-

periodically extended. We consider two cases:

1. The Number of Samples N=2m+1 is Odd

Then the function

 P(t)=∑k=-m
m Ck Exp[ⅈ k 2π t/T]

is the uniquely determined trigonometric interpolation polynomial of degree at most

(N-1)/2. If the samples are real, then P(t) is also real-valued. In particular P = f, if the

function f is a T -periodic trigonometric polynomial of degree at most m.

2. Trigonometric Interpolation with an Even Number of Samples

If N = 2m is even, then the interpolation problem is not uniquely solvable.

The trigonometric polynomial P(t)=∑k=-m
m αkExp[ⅈ k 2π t /T] has N+1 coefficients. The

DFT yields N coefficients C0,...,CN-1. The function

 P1(t)=∑k=-m
m-1 Ck Exp[ⅈ k 2π t/T]

is an interpolation function for f, but in general is not real-valued. By the alias rela-

tion, we can obtain as a second interpolation

 P2(t)=∑k=-m+1
m-1 Ck Exp[ⅈ k 2π t/T] + CN /2Cos[m 2π t/T] .

If the samples are real-valued, then P2 is also a real-valued function. It is the unique

trigonometric interpolation polynomial in the vector space Vm spanned by 1,

cos(kω0t), sin(kω0t) for k=1, . . . , m-1, and cos(mω0t), ω0=2π/T. With

ak = Ck + C-k = 2 Ck , bk = ⅈ (Ck - C-k) we can write P2 in the form

 P2(t)=
a0

2
+ ∑k=1

m-1 akcos(ω0kt)+bksin(ω0kt) +
am

2
cos(mω0t).

If f can be extended to a T -periodic even function, then all coefficients bk=0. If an odd

T-periodic extension is possible, then all ak=0.

Example 11. For N=4, tn =nπ/2, T=2π with samples y0=1, y1=2, y2=1 and y3=3 we com-

pute P2 as above and obtain P2(t)=7/4-1/2 sin(t)-3/4 cos(2t). Also P(t)= P2(t)+α sin(2t)

with arbitrary real α is a trigonometric interpolation polynomial of degree 2, since

sin(2tn) always is zero. However, such a function P is not in the space V2 as defined

above for α≠0.

The given interpolations P1 and P2 are trigonometric polynomials in the baseband to

a DFT. For bandpass signals f , trigonometric interpolation polynomials in the corre -

sponding passband can also be given with the help of a DFT and bandpass sampling.

In particular, trigonometric polynomials in a passband can be reconstructed exactly

with a DFT. The formulation of this is left to the readers.

Chapter 3 Discrete Fourier Transforms 79

Example 12. Interpolation of Fourier transforms of time-limited functions, upsam-

pling by zero-padding.

The DFT is often used to obtain approximations for Fourier transforms ℱf of gener -

ally non-periodic functions f . It makes sense to consider time-limited functions, i.e.,

functions with bounded support (see below). For such functions f, assumed to be

piecewise continuously differentiable with support, for example, in [-T,T] it holds for

samples Fk of their Fourier transform at points 2πk/T and the Fourier coefficients ck

of the T-periodic extension of f the relation Fk=Tck (see [1], 11.5). Therefore, we can

use the DFT to approximately compute samples of the Fourier transform of f , by

which we can approximately illustrate the Fourier transform through interpolation.

Enlarging the sampling duration T by additionally appending zeros to the samples

(with equal sampling frequency) one can improve with higher frequency resolution

the approximation for ℱf . Analogously, zero-padding in the frequency range yields an

upsampling of a time-signal by an IDFT. This is widely used in the algorithms of

OFDM transmissions in digital communications (for details see [1], 12.3).

For this, the interpolation points are then (2πk/T, T C k) with the DFT coefficients ck

and updated sampling time. We test an example with a triangle function and its

known Fourier transform.

In[]:= T = 1;

f[t_] = (t + T) (HeavisideTheta [t + T] - HeavisideTheta [t]) +

(- t + T) (HeavisideTheta [t] - HeavisideTheta [t - T]);

F[w_] = FourierTransform [f[t], t, w, FourierParameters → {1, -1}]

pf = Plot[f[t], {t, -3, 3}, PlotLegends → Placed [{"Sampled Function f"}, Above],

PlotStyle → {Blue, Thickness [0.01]}]

Out[]=

2 - 2 Cos[w]

w2

Out[]=

Sampled Function f

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

80 Fourier Analysis with Mathematica 1

In[]:= pF = Plot[Abs[F[w]], {w, 0, 4 Pi}, PlotStyle → {Blue, Thickness [0.01]},

PlotLegends → Placed [{"Fourier Transform of the Sampled Function f,

right sided "}, Above]]

Out[]=

Fourier Transform of the Sampled Function f,

right sided

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

Zero-Padding

With 9 samples we obtain a first rather rough approximation for ℱf covering the

angular frequency range up 4π . It is shown in the left image below.

Then, we can improve the approximation by zero-padding. We append 2039 zeros to

the samples of f. Equivalently, we sample f with the same sample rate over the time of

T=2048/4s=512s. The errors come from the numerical approximation of Fourier coeffi -

cients by the DFT and from alias effects, since ℱf has unbounded support.

In[]:= data = Table [f[-1 + 2 n / 9], {n, 0, 8}];

phase = Table [(-1)^ k, {k, 0, 8}];

dft = phase Chop [Fourier [data, FourierParameters → {-1, -1}]]

pF1 = ListLinePlot [2 dft〚1 ;; 5〛,

DataRange → {0, 4 Pi}, PlotStyle → {Blue, Thickness [0.01]},

PlotLegends → Placed [{"Approximation of the Fourier Transform of f,

9 Samples of f"}, Above]];

Out[]= {0.493827 , 0.204713 , -0.00699058 , 0.0246914 ,

-0.0105191 , 0.0105191 , -0.0246914 , 0.00699058 , -0.204713 }

Chapter 3 Discrete Fourier Transforms 81

In[]:= datanew = Table [f[-1 + n / 4], {n, 0, 2047}]; (* equal sampling rate *)

phase = Table [(-1)^ k, {k, 0, 2047}];

dftnew = phase Chop [Fourier [datanew , FourierParameters → {-1, -1}]];

pz = ListLinePlot [Abs[512 dftnew 〚1 ;; 1024〛] + 0.03, DataRange → {0, 4 Pi},

PlotRange → All, PlotStyle → {Dashed , Red, Thickness [0.01]},

PlotLegends → Placed [{"Approximation of the Fourier Transform ,

9 Samples of f + 2039 appended zeros ,

shown with offset + 0.03"}, Below]];

pF2 = Show [pF, pz]; (* updated sampling time T according

to the number of samples included the appended zeros *)

GraphicsColumn [{pF1, pF2}]

Out[]=

Approximation of the Fourier Transform of f,

9 Samples of f

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

Fourier Transform of the Sampled Function f,

right sided

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

Approximation of the Fourier Transform ,

9 Samples of f + 2039 appended zeros ,

shown with offset + 0.03

82 Fourier Analysis with Mathematica 1

3.5 DFT, IDFT and Time Windows in Digital Signal Processing

Example 13. WLAN transmission with windowed OFDM

In digital communication with multi-carrier transmissions, usually OFDM (orthog -

onal frequency division multiplexing) is used in DMT, DSL, DVB, WLAN, LTE or 5G.

The information for transmission is fed to the transmitter as an encoded bit stream.

The information of N bit groups is transformed to complex amplitudes ck of a trigono-

metric polynomial S(t) = ∑k=-N /2
N /2 ck ⅇik2πt/T on a time interval [0,T] with equally spaced

frequencies k/T, k=-N/2,...,N/2 (N even).

The parts of a single frequency are called carriers. The carriers are pairwise orthogonal

in L2([0,T]), which motivates the name OFDM for the method. The trigonometric

polynomial S has the bandwidth of 20 MHz in WLAN . Control of this 20 MHz transmis -

sion bandwidth in WLAN is the task of the respective hardware in a WLAN device.

Physically, the signals are voltage curves across time.

The real-valued transmission pulse Sℝ is obtained from S by quadrature amplitude

modulation (QAM) with an angular intermediate center frequency ωc and multiplied

with a time-window wT , i.e., defined by

Sℝ(t) = Re[ⅇ ⅈ ωc t ∑k=-N /2
N /2 ck ⅇik2πt/T]wT (t). The Fourier coefficient c0 is set to zero.

The rectangle time window wT is simply the function 1[0,T]. Different modulations for

transmitting this signal are possible and in use. We focus on the 16QAM modulation

in WLAN at 2.4 GHZ with bandwidth 20 MHz. With 16QAM , a pulse is transmitting 48

data carriers , each mapping a 4-bit-group out of the encoded bitstream to a complex

amplitude of a carrier. 16QAM maps each possible 4-bit-group one-to-one to a com-

plex amplitude out of 16 possibilities (see the constellation diagram on p. 85). The

quadrature amplitude modulation preserves orthogonality of the carriers and the

signal bandwidth. By QAM, the spectrum is shifted to ωc as angular center frequency.

The samples obtained by an IDFT of the amplitudes ck are interpolated to eventually

obtain the real-valued transmission signal Sℝ (see also above p.79, 3.4, Trigonometric

Interpolation). Thus, almost all can be achieved with discrete signal processing.

The receiver can invert this QAM modulation, thus get back the complex signal S in

the baseband (center frequency = 0), detect its complex amplitudes by a DFT of its

samples and can thus reconstruct the transmitted bits from the 16QAM mapping.

Signal Processing: The transmitter generates with the amplitudes of S a discrete time

signal by an IDFT to obtain a number of interpolation points. An also discrete quadra -

ture amplitude modulation of that complex samples yields the samples of the real-

valued signal Sℝ that can be fed to a lowpass filter (like a Butterworth lowpass filter) to

obtain a continuous real-valued signal for transmission (compare the Shannon Sam-

pling Theorem) . The transmit power of a WLAN device (e.g. 100 mW) is the actual

radiated RF power — obtained by scaling and amplifying the signal.

The receiver afterwards can invert the QAM modulation and compute from samples

of the obtained signal the sought complex amplitudes simply by a DFT of that sam-

ples, provided that various disturbances in the transmission channel are mastered by

suitable channel equalization (see for example [4] and [7] on channel estimation).

Finally, from the 16QAM mapping the transmitted bit sequence can be reconstructed.

Chapter 3 Discrete Fourier Transforms 83

The signal contains additionally 4 pilot carriers (-21, -7, 7, 21) with known frequencies

and amplitudes at the receiver , which can be detected at the receiver and used for

synchronization and channel estimation for denoising. See example 7 in 3.1, p. 68.

Windowing, Spectral Efficiency: Using a rectangle time-window 1[0,T] for an

information package in a sent pulse however causes much unacceptable out-of-band

emissions due to the low decreasing of the window's spectrum (like sinc-functions).

Therefore smoother time-windows are used in practice as, for example, RC windows

(raised cosine windows), which have faster spectral decay. We plot an RC window.

T = 3.2 × 10 ^ (-6); (* duration of a rectangle window across seconds *)

tr = T / 16;

alpha = -1 + (T + 5 tr / 4) / T;

T (1 + alpha) ;

(* slightly longer duration 3.45 x 10^(-6) s of the RC window *)

rcwindow [t_] = (0.5 × (1 - Cos[Pi t / (tr / 4)]) (UnitStep [t] - UnitStep [t - tr / 4]) +

(UnitStep [t - tr / 4] - UnitStep [t - (T + tr)]) +

0.5 × (1 + Cos[Pi (t - (T + tr)) / (tr / 4)])

(UnitStep [t - (T + tr)] - UnitStep [t - (T + 5 tr / 4)]));

p1w = Plot[rcwindow [t], {t, 0, 3.5 × 10 ^ (-6)},

PlotLegends → Placed [{"RC window complete "}, Above],

Ticks → {{0.8 × 10 ^ (-6), 2. × 10 ^ (-6), 3.5 × 10 ^ (-6)}, {0.2, 0.4, 0.6, 0.8, 1.0}}];

p2w = Plot[rcwindow [t], {t, 3.38 × 10 ^ (-6), 3.5 × 10 ^ (-6)},

PlotLegends → Placed [{"RC window zoomed at boundary "}, Above],

Ticks → {{3.4 × 10 ^ (-6), 3.45 × 10 ^ (-6), 3.5 × 10 ^ (-6)}, {0.2, 0.4, 0.6, 0.8, 1.0}}];

GraphicsRow [{p1w , p2w }]

Out[]=

RC window complete

8. × 10-7 2. × 10-6 3.5 × 10-6

0.2

0.4

0.6

0.8

1.

RC window zoomed at boundary

3.4 × 10-6 3.45 × 10-6 3.5 × 10-6

0.2

0.4

0.6

0.8

1.

Since the duration of the RC window - shown across time in seconds - is slighty longer

than that of the rectangle window, orthogonality of the carriers is lost and a low inter-

carrier-interference occurs (ICI), which is mastered however by the 16QAM encoding.

Below for comparison, in the left figure you see the decay of the half-sided spectral

magnitude of the rectangle window with duration T and that of the RC window. They

are shown across frequencies in Hz from the center frequency of channel 1 in the

WLAN example below until the start of WLAN channel 6 with distance 1.5⨯107 Hz

from the center frequency.

84 Fourier Analysis with Mathematica 1

The right figure below shows the 16QAM constellation diagram, IEEE 802.11-2020.

In[]:= ftwindow [w_] = T Sin[w T / 2] / (w T / 2) Cos[w alpha T / 2] / (1 - (alpha w T / Pi)^2);

(*Fourier transform of the window *)

ftrechteckwindow [w_] =

FourierTransform [UnitStep [t] - UnitStep [t - T], t, w, FourierParameters → {1, -1}];

p1 = Plot [Abs[ftwindow [2 Pi s]], {s, 0, 15 × 10^6},

PlotStyle → Directive [Red, Thickness [0.01]], PlotRange → {0, 4 × 10^ (-7)},

Ticks → {{2. × 10^6, 6. × 10^6, 10. × 10^6, 14. × 10^6}, Automatic }];

p2 = Plot [Abs[ftrechteckwindow [2 Pi s]], {s, 0, 15 × 10^6},

PlotStyle → Directive [Blue, Thickness [0.003]], PlotRange → {0, 4 × 10^ (-7)},

Ticks → {{2. × 10^6, 6. × 10^6, 10. × 10^6, 14. × 10^6}, Automatic }];

p3 =

Show [

p1,

p2];

p4 = Import ["/home /rolf /Desktop /16qam2.webp"];

GraphicsRow [{p3, p4}]

2. × 10
6

6. × 10
6

1. × 10
7

1.4 × 10
7

1. × 10
-7

2. × 10
-7

3. × 10
-7

4. × 10
-7

 16QAM Constellation Diagram

 Absolute values of the spectral magnitude of the The I-Axis means the real parts, the

 rectangle window (blue) and of the Raised Cosine Q-Axis the imaginary parts of complex

 window (red), showing the far better damping of numbers. For example, the bit group

 the RC window for increasing frequencies. 1001 is mapped to 3 - 1 ⅈ.

Note that each single carrier ck ⅇ ⅈ k ω0 t in a sent pulse (see below) with amplitude ck

has the spectrum ck ℱ [window] (ω - k ω0) with ℱ the Fourier transform , ω0 = 2π/T.

With regard to radiation and spectral efficiency , this demonstrates the relevance of

pulse shaping with the time window .

Chapter 3 Discrete Fourier Transforms 85

Now, we consider two typical spectral shapes of a single WLAN pulse , which I gener -

ated with Mathematica according to the 16QAM mapping of groups of 4 bits each to a

complex amplitude. I omit the somewhat lengthy Mathematica commands for this

here. This pulse consists of a single OFDM symbol , which transmits with 16QAM an

information package. The 802.11a/g standard in the 2.4 GHz frequency band with

16QAM uses 48 data subcarriers and 4 pilot subcarriers with carrier numbers

(-21, -7, 7, 21), with known complex amplitudes at the receiver. Thus, for the pulse a

trigonometric polynomial is used with 52 equally spaced frequencies to transmit the

data (192 bits of an encoded bit stream) in complex amplitudes ck as described

shortly above. The actual useful information bits are less than 192 in a pulse, because

they are transmitted with a code rate for error correction redundancy. For example, a

code rate of 3/4 means that out of four transmitted data bits, three actually contain

useful data and the fourth bit is an error correction redundancy bit. The bitstream is

usually encoded with convolutional coding as forward error correction (FEC). Physi-

cally, the signals are voltage curves across time.

The total channel bandwidth is 20 MHz with an occupied bandwidth of 16.6 MHz for

the overall data transmission. The subcarrier spacing is 312.5 kHz. The channel spac-

ing is 25 MHz. Below you clearly see that the blue spectral energy distribution of a

transmission with a rectangle time window has much more out-of-band emission

than the red spectral energy distribution, where an RC pulse shaping is used .

Thus, pulse shaping is a relevant topic in communication engineering to mitigate

interferences.

The channels 1, 6 or 11 are often used and suitably chosen by WLAN routers at home

operating at 2.4 GHz with 20 MHz bandwidth, if several networks operate in a near

neighborhood, because these channels hardly show mutual interferences. You can

check this with your router at home. Some channels may be restricted in certain

countries (e.g. the US does not permit channel 12 to prevent interference with other

devices in the adjacent frequency band like satellite phones and other low-speed data

communications).

The allowed out-of-band radiations are regulated in IEEE specifications with spec-

tral masks for various transmission methods. The RC pulse shape, for example, fulfills

the requirements for WLAN 802.11a/g, the pulse with a rectangle time window does

not meet the requirements.

This is demonstrated in the following illustration. Compare the corresponding radia -

tions of channel 1 at 2427 MHz, where the carriers of channel 6 start. The pulse shape

with a rectangular time window in blue, that of an RC pulse shape in red. The RC

pulse shaping as shown here is used in real systems , for example, by Broadcom accord -

ing to "L. Montreuil et al. (2013), Broadcom Recommendations for Tx Symbol Shap -

ing". Broadcom is a supplier for digital communication devices of various providers

and offers also PCI WiFi Cards.

86 Fourier Analysis with Mathematica 1

Out[]=

Supplementary explanations

1) The WLAN signal is an energy signal , it has no power density spectrum in the classi -

cal sense. In practice for transmission tests, a great number of OFDM signal pulses

transmit a random 01-sequence. Their spectra are averaged to obtain an approxima-

tion for a power spectral density (PSD) . Such PSD diagrams are used by manufacturers

to demonstrate compliance with regulations for out-of-band radiations in WLAN

transmissions. A power spectral density can theoretically be introduced, if the OFDM

transmission is mathematically modeled as a stationary stochastic process (Wiener-

Chintchin-Theorem).

In PSD figures, the results are mostly shown in units dBm/Hz relative to a total

power. Alternatively, as above with my single OFDM symbol spectrum, it can be

shown in dBr, which is normed so that the peak is at 0 dB. The spectral masks in the

IEEE regulations are given in dBr , because only the shape of the power density spec-

trum matters, when the out-of-band radiation is relevant. For example, in 802.11g for

WLAN with OFDM the radiation must fulfill -28 dBr at 20 MHz offset and -40 dBr at

30 MHz offset from the center frequency. A pulse with the rectangle time window

does not fulfill this requirement.

To give an example, how a PSD picture of such a measured average spectral power

density comes about, we must know the total power to which the measurement is

related. The example below shows dBm/Hz across frequencies with a peak level of

about -40 dBm/Hz. The total power P, to which this measurement is related, is not

shown. The unit is dBm/Hz for the bandwidth 2 MHz. The physical unit is V 2/Hz.

 dBm=dBm/Hz+10 Log[10, bandwidth in Hz], dBm = 10 Log[10, P/1 mW]

 P = 10dBm/10·1 mW,

i.e., for -40 dBm/Hz, dBm=33.0103. We find P ≈ 2000 mW. A WLAN transmission

device typically has a transmission power of 100 mW (20 dBm) in the 2.4 GHz band

for the signal.

Chapter 3 Discrete Fourier Transforms 87

Here the example of such a spectral power density, presumably made with a rectangu -

lar time window. The used time window is not specified on the screen of this spectral

analyzer, but we can compare with the previous graphic above to obtain this presump -

tion.

Out[]=

2) Some relevant data on WLAN with OFDM and 16QAM in the 2.4 MHz band:

FFT length 64

Guard Interval (GI) 1/4

Data Carriers 48

Pilot Carriers 4

The guard interval defines a duration, which is available for a cyclical extension of

the signal to the left as a so-called cyclic prefix . The cyclic prefix is realized as a copy

of the last samples of the OFDM symbol that is prepended to the actual time signal

samples.

The primary purpose of the cyclic prefix is to mitigate the effects of multipath propaga -

tion as delay spread that can cause inter-symbol interference (ISI) in wireless commu -

nication. By inserting the cyclic prefix, the receiver can tolerate a certain amount of

delay in the received signal without introducing ISI (see [1], ch. 12 for a detailed

example).

An important advantage of a cyclic prefix is that the convolution with the impulse

response h of a time-invariant transmission channel can mathematically be repre -

sented as a cyclic convolution, if this impulse response does not last longer than the

prefix. This allows for interference suppression using the samples of the estimated

channel frequency response ℱ (h), because the received signal r is the convolution

 r = S * h + additive noise .

88 Fourier Analysis with Mathematica 1

Thus without noise, division of the spectral values of r, obtained from the DFT of the

received signal samples, by the corresponding values of ℱ (h) would directly give the

sought signal amplitudes ck of S (cf. [1], ch.12) . However, a convolution equation of

that type is an illposed problem (think of very small values of ℱ (h)), and in real prac-

tice various modified estimation algorithms are used. For details on spectral estima -

tion see, for example, [7] K. D. Kammeyer, K. Kroschel.

A cyclic postfix is analogously a copy of the first carriers of the OFDM symbol that is

appended to the end of the symbol. While less common than the cyclic prefix, it can

be used in conjunction with windowing techniques in some OFDM implementations,

such as in some 5G waveforms. For more on this, see [1], ch. 12.

16QAM

Duration of an OFDM symbol 4 μs

Guard Interval Duration 0.8 μs

IDFT Period 3.2 μs

Data Carriers 48

802.11a with 20 MHz channel bandwidth uses 64 carriers, 48 of which are reserved for

data, and 4 for pilot tones.

Code Rate 1/2 or 3/4

Maximal Bit Rate 24 Mbps with Code Rate 1/2

[(48 number of carriers ⨯ 4 bits per carrier ⨯ 1/2 code rate)/(4 μs symbol duration) = 24 Mbps]

Maximal Bit Rate 36 Mbps with Code Rate 3/4

[(48 ⨯ 4 ⨯ 3/4)/4 = 36]

With 64QAM und code rate 3/4, the maximal bit rate is accordingly 54 Mbps, often

offered in DSL contracts, that are also based on OFDM transmission technology.

Code rates < 1 come from coding the bitstream of useful data with error-correcting

codes (convolution codes). A code rate of 3/4 means that out of four transmitted data

bits, three actually contain useful data and the fourth bit is an error correction redun -

dancy bit.

Summary. In that application example, widely used in digital devices of our everyday

live, I have tried to explain only the basic principle of the physical layer of an OFDM

transmission. There are many topics that need to be mastered for practical real-time

transmission within a few μs per symbol with OFDM or modifications of the proce -

dure (OFDMA, COFDM, FBMC, GFDM, etc.). These include, in particular, peak reduc -

tion (with many equal amplitudes in the OFDM symbols), peak-to-average power

ratio reduction (PAPR), channel equalization with multiple frequency-selective chan -

nels (Doppler effects with moving transmitters or receivers causing frequency disper -

sion), denoising, and many others . Despite mathematically simple principles, it is a

long way to a robust technology, demanding high skill from engineers and computer

scientists. For a detailed treatment of communication engineering, [4] L. W. Couch

(2012), “Digital and Analog Communication Systems” can be a helpful reference.

Since almost everything in the presented transmission can be done with discrete

signal processing, algorithms can be developed once and then distributed millions of

times without significant additional costs. This allows for low acquisition costs.

Chapter 3 Discrete Fourier Transforms 89

In implementations for computing a DFT usually the fast FFT algorithm is used. It

reduces the number of computations for an N = 2n point DFT from N2 to N log2(N).

Thus it yields a significant reduction of computation time. The algorithm, along with

its recursive application, was invented by Carl Friedrich Gauss around 1805. Cooley

and Tukey independently rediscovered and popularized it 160 years later. For details

see [1], ch. 6, or other references on the topic. For a DFT and IDFT, in Mathematica

the FFT is used as default .

The FFT was one of the Top 10 “Algorithms of the Century ”.

Finally you see two images of the authors of the Fast Fourier Transform algorithm

(FFT), one of the top 10 "Algorithms of the Century" as listed by the IEEE Computer

Society Journal.

James W. Cooley (1926 - 2016)

Out[]=

John Tukey (1915 - 2000)

90 Fourier Analysis with Mathematica 1

Example 14. Windowed Fourier transform with a DFT, Spectrograms

In its classical form, the Fourier transform ℱ does not allow for simultaneous time-

frequency analysis. For example, speech or a piece of music in our everyday experi -

ence has a specific “time pattern” and at the same time a specific “frequency pattern”.

However, the spectral function of a signal does not show at what times and with what

respective amplitudes a specific angular frequency ω occurs in a signal f , but rather

accumulates contributions of the same angular frequency ω over the entire time

course of f in ℱ f(ω). Dennis Gabor (1900-1979) already noticed these disadvantages

for signal processing purposes, and in 1946 in his work “Theory of Communication”,

he proposed time-frequency localization through Fourier transforms with window

functions.

To obtain information about the “time-frequency pattern” of a signal, one determines

not the spectral function of the entire signal, but the spectral functions for time seg-

ments of f . Time segments of a signal f are obtained by multiplying f with functions of

finite effective duration. Such functions are referred to as window functions or time

windows as considered above. We consider the following example.

A short-term model for a siren is approximately the function or chirp f (t)=A sin(g(t))

with g(t)=2πt (αt+ βt 2) for 0⩽t⩽10 s and constants A, α , β . The derivative of the argu-

ment g'(t)=2πt(2α+ 3βt) can be considered as the instantaneous angular frequency at

time t. The magnitude spectrum, approximately calculated with a DFT for paramters

A=1, α= 4[1/ s2], β =-4/15 [1/s3] over T = 10 s, shows a multitude of frequencies up to

the maximum frequency 20 Hz, but not the parabolic frequency modulation and not

the instantaneous frequencies at different times (left image below). The graph of an

approximation for the windowed Fourier transform of f with the “Hann window”

w(t)=0.5-0.5 cos(2 πt/T) for 0 ⩽t⩽ T=1 s, on the other hand, clearly shows the rise and

fall of the instantaneous frequencies and corresponds to our usual impression of the

variable frequency of the siren tone (right image). The calculations used a 512-point

DFT over a total of T =10 s, with the DFT coefficients CkT plotted as approximations

for ℱ f(2πk/T) in the first image. In the second case, 50 Hann windows of duration 1 s

were used at intervals of 0.2 s each. Per time segment, a 128-point DFT was performed

and the resulting (single-sided) DFT magnitude spectra were combined to form the

second image. Neither representation shows the constant amplitude A=1. One reason

is the strong aliasing effects due to the frequency modulation. The sum of the |Ck
2 of

the first image agrees numerically very well with the quadratic mean of f in [0, T] (in

both cases, the value is about 0.5). Numerical integration to calculate the windowed

Fourier transform for 20 Hz at t0 = 5 s results in approximately 0.24, as shown in the

following spectrogram on the right. The signal values (and thus A) can only be approxi -

mately recovered from the DFT using an interpolation polynomial or the formula for

discrete reconstruction from the data (for more details please see [1], 12.5). Now to

the images:

In[]:=

ClearAll ["Global` *"]

Chapter 3 Discrete Fourier Transforms 91

In[]:= B = 1;

M = 128;

NN = 50;

h[x_] = UnitStep [x];

w[x_] = (0.5 - 0.5 Cos[2 Pi B x]) * (h[x] - h[x - 1 /B]);

f[x_] = Sin[2 Pi 20 × (2 / 10 x ^ 2 - 1 / 75 x ^ 3)]

data0 = Table [f[10 n / 512], {n, 0, 511}];

dft = Chop [Fourier [data0 , FourierParameters → {-1, -1}]];

pdft = ListLinePlot [Abs[dft], PlotRange → All,

PlotLegends → Placed [{"DFT Magnitude ,T=10,N=512,

rectangle window "}, Above]]

data1 [k_, j_] = N[w[j / (B M)] × f[k * 0.2 + j / (B M)]];

FT1[k_, n_] := N[1 /M Sum[data1 [k, j] Exp[-2 Pi I n j /M], {j, 0, M - 1}]];

z[k_, n_] := N[Abs[FT1[k, n]]];

data2 = Table [z[k , n], {n, 1, 25}, {k, 0, NN - 1}];

pwindowed =

ListPlot3D [data2 , PlotRange → All, Mesh → 100, Axes → {True, True, True},

Boxed → False , AxesLabel → {"Window No.,Time in s =

Window No. x 0.2s" , "Hz", "Magnitude "},

AxesStyle → Directive [Black , Plain, 10],

PlotStyle → Directive [PlotPoints → 100], ViewPoint → {30, -40, 50},

AxesEdge → {{-1, -1}, {1, -1}, {-1, -1}},

Ticks → {{10, 40}, {10, 20, 25}, {0.0, 0.2}},

PlotLegends → Placed [{"3D Spectrogram , Windowed Fourier Transform ,

50 Hann Windows in T=10s"}, Above]];

Out[]= Sin40 π x2

5
-

x3

75


92 Fourier Analysis with Mathematica 1

Out[]=

DFT Magnitude ,T=10,N=512,

rectangle window

100 200 300 400 500

0.02

0.04

0.06

0.08

0.10

Now the 3D illustration of the windowed Fourier transform showing the time-fre -

quency pattern of the signal.

The illustration is also called a spectrogram.

In[]:= Show [pwindowed]

Out[]=

3D Spectrogram , Windowed Fourier Transform ,

50 Hann Windows in T=10s

In Mathematica you can illustrate spectrograms in a 2D image with the command

Spectrogram for a list of sampled data . For tests this is left to the reader. Instead we

make a 2D representation ourselves with MatrixPlot for our list data2:

Chapter 3 Discrete Fourier Transforms 93

In[]:= mplot = MatrixPlot [data2 , PlotLegends → True,

Axes → True, FrameLabel → {"Hz", "Window No."},

DataReversed → {True, False }, ColorFunction → "CMYKColors "];

2 D Spectrogram of the siren signal, time t = window number · 0.2s.

It could be sharpened with more sampling points.

In[]:= Show [mplot]

Out[]=

1 10 20 30 40 50

1

5

10

15

20

25

1 10 20 30 40 50

1

5

10

15

20

25

Window No.

H
z

0.01

0.04

0.09

0.13

0.18

0.22

0.26

3.6 The Discrete Cosine Transforms DCT I and DCT II

Widely used variants of the DFT for real - valued functions are the discrete Cosine

transforms DCT I and DCT II.

1. The discrete Cosine Transforms DCT I

We assume a continuous, piecewise continuously differentiable real-valued function f

on [0, T], which we think of as being extended to an even 2T-periodic function fp on

the line, and consider samples yn of fp with the symmetry yn = y-n .

With N=2m samples yn= fp(nT/m) for n =-m +1, . . . , m, we obtain for the DFT coeffi -

cients ak = Ck + C-k = 2 Ck of fp and 0⩽k⩽m, due to the symmetry

 yn=yn±2 m= fp(nT/m±2T) and the relation

 Exp[-ⅈ πkn/m]=Exp[ⅈπk(n±2m)/m]

the DCT I and its inverse (see also [1], chapter 6 for more details). The IDCT can

directly be seen from the interpolation polynomial P2 above, because

 yn=P2(nT/m) with ω0=π/T for the 2T-periodic fp.

 DCT I ak =
2
m

 y0

2
+ ∑n=1

m-1 yncos(πkn/m) +
ym

2
cos(kπ)), k=0,...,m

94 Fourier Analysis with Mathematica 1

 IDCT I yn =
a0

2
+ ∑k=1

m-1 akcos(πkn/m) +
am

2
cos(nπ), n=0,...,m

Before showing applications of the DCT, we turn to another option and consider

interpolation with a shifted set of nodes in comparison. This case results in the vari-

ant known as DCT II, which is particularly widespread in DCT applications. Here we

describe simply the result and refer to [1], chapter 6 for more details and proofs.

2. The discrete Cosine Transforms DCT II

As before, we assume a given continuous, piecewise continuously differentiable real-

valued even 2T -periodic function fp . However, we now choose a shifted set of nodes

tn, at which the samples are taken:

 tn=(2n+1)T/(2m), 0⩽n⩽2m-1.

Using the given symmetry properties we achieve after some calculation (see [1], 6.4)

the corresponding real-valued trigonometric interpolation polynomial P3 from the

formula for P2 above as

 P3(t)=
a0

2
+ ∑k=1

m-1 akcos(ω0kt) with ω0=π/T, yn = fp(tn) and the DCT II is

 DCT II : ak =
2
m

 ∑n=0
m-1 yn cos(πk(2n+1)/(2m)), k=0,...,m-1.

 IDCT II: We can immediately recognize the inverse IDCT II from P3.

 yn =
a0

2
+ ∑k=1

m-1 ak cos(πk(2n+1)/(2m)) n=0,...,m-1.

The DCT II in its 2D variant is widely used in image processing as for JPEG compres -

sion algorithms. It is also closely connected with interpolation by Chebyshev polyno -

mials as we will see in the subsequent section 3.7.

Chapter 3 Discrete Fourier Transforms 95

3.7 Interpolation with the DCT I and DCT II

As an example we consider the so-called Runge function runge[t]=1/(1+25 t 2) in the

intervall [-1,1].

It is infinitely often differentiable on the entire reals, but its power series has only

convergence radius 1/ 5 due to the poles at ± 1/ 5 ⅈ . We make first a trigonometric

interpolation with the DCT I and then an interpolation with the DCT II with shifted

nodes. This is a remarkable example, because polynomial interpolation with equidis -

tant nodes give very bad approximations. We will see this in the subsequent section

3.9, where Chebyshev polynomials with Chebyshev nodes are used for interpolation.

There the coefficients for the interpolation polynomials are also obtained with a DCT.

In[]:= runge [t_] = 1 / (1 + 25 t^ 2);

plot20 = Plot[runge [t], {t, -1, 1}, PlotRange → {0, 1},

PlotLegends → Placed [{"Runge function "}, Above],

PlotStyle → {Blue, Thickness [0.008]}, ImageSize → Small]

Out[]=

Runge function

-1.0 -0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

1) Now a DFT and equivalently a DCT I with an even number NN of samples. As

already above, we have to correct the phases in the DFT spectrum, because we take

the samples in [-1,1]. The resulting spectrum must be real and even (see [1], 4.1.)

In[]:= T = 2; NN = 16;

data20 = Table [runge [-1 + T k /NN] , {k, 0, NN - 1}];

dataphase20 = Table [(-1)^ k, {k, 0, NN - 1}];

dft20 = dataphase20 *Chop [Fourier [data20 , FourierParameters → {-1, -1}]];

Here the uniquely determined real trigonometric interpolation polynomial with the

maximal frequency in the above defined vector space VNN/2. Above, this approxima -

tion was called P2(t) with NN/2=m.

In the example we have the maximal frequency 4 Hz. We plot the Runge function and

this approximation in Red with a small offset +0.03 for a better visibility.

96 Fourier Analysis with Mathematica 1

In[]:= rungeapprox1 [t_] =

FullSimplify [Sum[dft20〚k + 1〛 Exp[I * 2 Pi / T k t], {k, 0, NN / 2 - 1}] +

Sum[dft20〚k + 1〛 Exp[I * 2 Pi / T * (k - NN) t], {k, NN / 2 + 1, NN - 1}]] +

dft20〚NN / 2 + 1〛 Cos[NN / 2 * 2 Pi / T * t]

offset =

0.03;

Out[]= 0.274611 + 0.344365 Cos[π t] + 0.175654 Cos[2 π t] +

0.0972947 Cos[3 π t] + 0.050132 Cos[4 π t] + 0.0285903 Cos[5 π t] +

0.0149957 Cos[6 π t] + 0.0105194 Cos[7 π t] + 0.00383778 Cos[8 π t]

In[]:= plot21 = Plot[rungeapprox1 [t] + offset , {t, -1, 1},

PlotRange → {0, 1.1}, PlotStyle → {Red, Thickness [0.008]},

PlotLegends → Placed [{"Approximation with a DFT/DCT I"}, Below]];

In[]:= Show [{plot20 , plot21 }]

Out[]=

Runge function

-1.0 -0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Approximation with a DFT /DCT I

This DFT approximation is the same as with a DCT I with NN/2+1=9 samples in the

interval [0,1] of the form tk= k/m for k=0,...,m with m=NN/2.

2) Now an interpolation by a DCT II with an even number of samples. The nodes are

tk=(2n+1)/NN for 0⩽n⩽NN2/2-1. We use here the DCT II, which is implemented in

Mathematica with the command FourierDCT[list,2] and choose NN2=NN+2, m=N -

N2/2, NN=16 from before to obtain the same maximal frequency as above. The result -

ing interpolation function is P3(t) in the notation from above and in [1], 6.6.

In[]:= NN2 = NN + 2; m = NN2 / 2; (* now take the samples in [0,1] *)

list = Table [runge [(2 n + 1) / (2 m)] , {n, 0, m - 1}];

dct2 = 1  m FourierDCT [list, 2] ;

rungeapprox2 [t_] = dct2〚1〛+ Sum[2 dct2〚k〛 Cos[(k - 1) π t], {k, 2, m}]

Out[]= 0.27471 + 0.344011 Cos[π t] + 0.175799 Cos[2 π t] +

0.0967712 Cos[3 π t] + 0.050008 Cos[4 π t] + 0.0274507 Cos[5 π t] +

0.0138577 Cos[6 π t] + 0.00727322 Cos[7 π t] + 0.00286974 Cos[8 π t]

Chapter 3 Discrete Fourier Transforms 97

In[]:= offset = 0.03;

plot22 = Plot[rungeapprox2 [t] + offset , {t, -1, 1},

PlotRange → {0, 1.1}, PlotStyle → {Red, Thickness [0.008]},

PlotLegends → Placed [{"Approximation with a DCT II"}, Below]];

Show [{plot20 , plot22 }]

Out[]=

Runge function

-1.0 -0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Approximation with a DCT II

Subsequently the absolute approximation errors of both trigonometric polynomials

for a comparison. The zeros of the error curves are the positions, where the Runge

function is interpolated. In both cases we have 9 those nodes in [0,1].

In[]:= errordct1 [t_] = Abs[runge [t] - rungeapprox1 [t]];

errordct2 [t_] = Abs[runge [t] - rungeapprox2 [t]];

In[]:= plot23 = Plot[errordct1 [t], {t, -1, 1},

PlotRange → {0, 0.008 }, PlotStyle → {Red, Thickness [0.005]},

PlotLegends → Placed [{"Error with DCT I"}, Below]];

plot24 = Plot[errordct2 [t], {t, -1, 1}, PlotRange → {0, 0.008 },

PlotStyle → {Blue, Thickness [0.005]},

PlotLegends → Placed [{"Error with DCT II"}, Below]];

Show [{plot23 , plot24 }]

Out[]=

-1.0 -0.5 0.0 0.5 1.0

0.002

0.004

0.006

0.008

Error with DCT I Error with DCT II

98 Fourier Analysis with Mathematica 1

3.8 Application of the DCT I in Numerical Integration, Clenshaw-Curtis Quadrature

In [1], 6.5 the Clenshaw-Curtis quadrature is derived. We will consider it here as an

application of a DCT I with the example

 f [t_] = ⅇt +3 Cos[24 t] - t 6 on [-1,1].

The following representation shall give readers already a first impression of the use of

vectors and matrices in Mathematica.

We choose as example m=12 for 2m+1 used samples of f for the algorithm.

As shown in [1], with the Clenshaw-Curtis quadrature instead of f (cos(ϕ))sin(ϕ) on

[0,π] a trigonometric approximating polynomial for the factor f (cos(ϕ)) on [0,π] is

integrated, which is obtained by a DCT 1 and has the maximal angular frequency 2m.

With that, an approximation SN(f) for the desired integral of f over [-1,1] is com-

puted.

In [1] it is shown that one can use a DCT I with only m+1 samples for the computa -

tion of the weights wn in the quadrature formula

 SN(f) = ∑n=0
m wn (f (xn) + f (-xn))

 with xn=Cos[nπ/(2m)], 0⩽n⩽m.

For the computation in the example we define as in [1], 6.5 the (m+1)x(m+1) DCT I

matrix and proceed as described there.

With the subsequently defined vector b for the computation of the weights we need

the transpose of the DCT I matrix, which is called dctmatrixtransposed.

In[]:= m = 12;

dctpart1 = Table [1 /m Cos[π (k - 1) (n - 1) /m], {k, m + 1}, {n, 2, m}];

dctpart2 = Map[Prepend [#, 1 / (2 m)] &, dctpart1];

vector = Table [1 / (2 m) Cos[π (k - 1)], {k, m + 1}];

dctmatrixtransposed = Append [Transpose [dctpart2], vector] ;

(* with dctmatrixtransposed //MatrixForm you can see the usual matrix form as

output . But dont do that here in the definition of dctmatrixtransposed ,

because otherwise matrix multiplication with b below does not work *)

In[]:= dctmatrixtransposed // MatrixForm

Chapter 3 Discrete Fourier Transforms 99

Out[]//MatrixForm=

1

24

1

24

1

24

1

24

1

24

1

24

1

24

1

24

1

24

1

24

1

24

1

24

1

24

1

12

3 +1

24 2

1

8 3

1

12 2

1

24

3 -1

24 2
0 -

3 -1

24 2
-

1

24
-

1

12 2
-

1

8 3
-

3 +1

24 2
-

1

12

1

12

1

8 3

1

24
0 -

1

24
-

1

8 3
-

1

12
-

1

8 3
-

1

24
0

1

24

1

8 3

1

12

1

12

1

12 2
0 -

1

12 2
-

1

12
-

1

12 2
0

1

12 2

1

12

1

12 2
0 -

1

12 2
-

1

12

1

12

1

24
-

1

24
-

1

12
-

1

24

1

24

1

12

1

24
-

1

24
-

1

12
-

1

24

1

24

1

12

1

12

3 -1

24 2
-

1

8 3
-

1

12 2

1

24

3 +1

24 2
0 -

3 +1

24 2
-

1

24

1

12 2

1

8 3
-

3 -1

24 2
-

1

12

1

12
0 -

1

12
0

1

12
0 -

1

12
0

1

12
0 -

1

12
0

1

12

1

12
-

3 -1

24 2
-

1

8 3

1

12 2

1

24
-

3 +1

24 2
0

3 +1

24 2
-

1

24
-

1

12 2

1

8 3

3 -1

24 2
-

1

12

1

12
-

1

24
-

1

24

1

12
-

1

24
-

1

24

1

12
-

1

24
-

1

24

1

12
-

1

24
-

1

24

1

12

1

12
-

1

12 2
0

1

12 2
-

1

12

1

12 2
0 -

1

12 2

1

12
-

1

12 2
0

1

12 2
-

1

12

1

12
-

1

8 3

1

24
0 -

1

24

1

8 3
-

1

12

1

8 3
-

1

24
0

1

24
-

1

8 3

1

12

1

12
-

3 +1

24 2

1

8 3
-

1

12 2

1

24
-

3 -1

24 2
0

3 -1

24 2
-

1

24

1

12 2
-

1

8 3

3 +1

24 2
-

1

12

1

24
-

1

24

1

24
-

1

24

1

24
-

1

24

1

24
-

1

24

1

24
-

1

24

1

24
-

1

24

1

24

Now the needed vector b, and with that the computation of the vector w of weights

for the quadrature. They all are positive with the sum equal to 1.

In[]:= beta = Table [2, {k, m + 1}]; beta〚1〛 = 1; beta〚m + 1〛 = 1;

b = Table [beta〚k〛 / (1 - 4 (k - 1)^ 2), {k, m + 1}];

w = N[dctmatrixtransposed .b]

Out[]= {0.00173913 , 0.0166755 , 0.0340258 , 0.0500188 , 0.0654954 , 0.0796553 ,

0.0925836 , 0.103831 , 0.113378 , 0.120922 , 0.126452 , 0.129768 , 0.0654559 }

In[]:= Sum[w〚k〛, {k, 1, m + 1}]

Out[]= 1.

Finally the necessary samples of f and the numerical integration :

In[]:= f[t_] = Exp[t] + 3 Cos[24 t] - t^ 6;

y = Table [N[f[Cos[(k - 1) π / (2 m)]] + f[-Cos[(k - 1) π / (2 m)]]], {k, 1, m + 1}]

Out[]= {3.63124 , 2.55048 , -0.84054 , -4.22864 , -0.183221 , 8.05541 ,

0.451138 , -0.453541 , 7.28713 , -3.68553 , 8.05142 , -3.98271 , 8.}

Result: The value SN by the Clenshaw-Curtis quadrature is

In[]:= SN = w.y

Out[]= 1.83855

For comparison: You can exactly solve the integral

100 Fourier Analysis with Mathematica 1

In[]:= integral = Integrate [f[t], {t, -1, 1}]

Out[]= -
2

7
-

1

ⅇ + ⅇ+ Sin[24]

4

In[]:= N[%, 16]

Out[]= 1.838293511071661

The reason for the difference of the integral values is the fixed number 2m+1 of sam-

ples we worked with, while Mathematica iterates to get a certain precision. The quadra -

ture with N+1=2m+1 nodes is exact for polynomials up to the degree N. For the compu -

tation of the weights a DCT I of length m+1 is sufficient.

An example for an little program with Mathematica with the Clenshaw-Curtis quadrature

A program in Mathematica is a Module, which we here call ccq[g,{a,b},m,opt] for

integration of g:[a,b]⟶ℝ with m as above, i.e., polynomials up to degree 2m are

exactly integrated. The parameter opt is the number of decimals in the result.

In[]:= ccq[g_, {a_, b_}, m_, opt_] :=

Module [{f , x, dctpart1 , dctpart2 , dctmatrixtransposed , beta, be, w, y, dez},

f[x_] = g[(b - a) / 2 x + (a + b) / 2] (b - a) / 2;

(* hier wird Substitution benutzt *)

dctpart1 = Table [1 /m Cos[π (k - 1) (n - 1) /m], {k, m + 1}, {n, 2, m}];

dctpart2 = Map[Prepend [#, 1 / (2 m)] &, dctpart1];

vector = Table [1 / (2 m) Cos[π (k - 1)], {k, m + 1}];

dctmatrixtransposed = Append [Transpose [dctpart2], vector];

beta = Table [2, {k, m + 1}]; beta〚1〛 = 1; beta〚m + 1〛 = 1;

be = Table [beta〚k〛 / (1 - 4 (k - 1)^ 2), {k, m + 1}];

dez = opt; w = N[dctmatrixtransposed .be, dez];

y = Table [N[f[Cos[(k - 1) π / (2 m)]] +

f[-Cos[(k - 1) π / (2 m)]], dez], {k, 1, m + 1}];

w.y]

Example 15. We choose g as the above integrated function on [-1,1], but this time

with m=24, i.e., 49 samples for the numerical integration. thus we achieve - except the

last decimal - the same result as in the computation above from the exact solution

with 16 decimals.

In[]:= g = Function [{t}, Exp[t] + 3 Cos[24 t] - t^ 6];

ccq[g, {-1, 1}, 24, 16]

Out[]= 1.838293511071663

Chapter 3 Discrete Fourier Transforms 101

Example 16. We integrate the polynomial p[x] = x3 -3 x12 +10 x15 on [1,3] with m=8

and opt=20.

Since p is a polynomial of degree less than 16, this quadrature is exact.

In[]:= p[x_] = x ^ 3 - 3 x ^ 12 + 10 x ^ 15;

ccq[p, {1, 3}, 8, 20]

Out[]= 2.6536299538461538462 × 107

We test the result by exact integration and let Mathematica show a decimal approxima -

tion with again 20 decimals.

In[]:= Integrate [p[x], {x, 1, 3}]

N[%, 20]

Out[]=

344 971 894

13

Out[]= 2.6536299538461538462 × 107

3.9 Application of the DCT in Interpolation with Chebyshev Polynomials

The Chebyshev polynomial T[n,x] of the first kind with degree on [-1,1] for n⩾0 is

defined by

 T[n,x] = cos[n arccos[x]].

With the trigonometric addition theorems for the cosine you quickly find the recur -

sion equation (n=1,2,...)

 T[n+1,x]=2x T[n,x] - T[n-1,x].

This shows that T[n,x] is a polynomial of degree n and as that is defined on entire ℝ

and ℂ. For even n the T[n,x] are even, for odd n they are odd functions and always it

holds | T[n,x] | ⩽ 1 auf [-1,1]. The coefficient an of an xn in T[n,x] is 2n-1. Since cos[nx]

in [0,π] has exactly n zeros, the polynomial T[n,x] has exactly n real zeros in [-1,1].

These zeros x[k] are x[k] = cos[(2k-1)π/(2 n)] für k=1,...,n.

Mathematica knows the Chebyshev polynomials as ChebyshevT[n,x]. We plot the first

5 of them and observe their symmetry properties and zeros.

102 Fourier Analysis with Mathematica 1

In[]:= Plot[Evaluate [Table [ChebyshevT [n, x], {n, 0, 5}]], {x, -1, 1},

PlotStyle → Directive [Hue, Thickness [0.006]],

PlotRange → All, PlotLegends → {0, 1, 2, 3, 4, 5}]

Out[]=

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

0

1

2

3

4

5

Chebyshev Polynomials as an orthogonal system

The considered polynomials build an orthogonal system with respect to the inner

product

 < f , g >w = ∫-1

+1
f (x) g (x)   1 - x2  ⅆx

with the weight function w(x)=1/  1 - x2 , considered for all real-valued functions f

and g on [-1,1] for which < f , f >w = || f ||2w and < g , g >w = || g ||2w exist. As usual

we identify functions f and g with || f - g ||w = 0 and denote the vector space of the accord -

ing equivalence classes as Hilbert space H = Lw
2([-1,1]). The Chebyshev polynomials

T[n,x] build a complete orthogonal system in that space. We show the first 3 of them

in unnormalized form.

In[]:= T0 = ChebyshevT [0, x]

T1 = ChebyshevT [1, x]

T2 = ChebyshevT [2, x]

Out[]= 1

Out[]= x

Out[]= -1 + 2 x2

Now with according norming so that || T [n, x] ||w=1, here for n=0,1,2.

Chapter 3 Discrete Fourier Transforms 103

In[]:= T0n[x_] = ChebyshevT [0, x] / Sqrt[Pi]

T1n[x_] = Sqrt[2 / Pi] ChebyshevT [1, x]

T2n[x_] = Sqrt[2 / Pi] ChebyshevT [2, x]

Out[]=

1

π

Out[]=

2

π x

Out[]=

2

π
-1 +2 x2

By definition of the Chebyshev polynomials, a series expansion of an element f in

H = Lw
2([-1,1]) is just the Fourier series expansion of the 2π-periodic even function

f(cos(ϕ)). The corresponding series converges in the norm of H and even uniformly for

continuously differentiable f as we know from the theory of Fourier series. Thus, the

coefficients of the expansions

 (1) f(x) =
a0

2
T[0,x] +∑k=1

∞ ak T [k , x]

are just the Fourier coefficients a0 / 2 and ak (k = 1, 2, ...) of f(cos(ϕ)).

Example 17. We consider some approximations of the sign function on [-1,1] by

Chebyshev polynomials and observe the Gibbs phenomenon as known from Fourier

series expansions near a jump. We plot the sign function and partial sums up to

T[5,x], T[9,x] und T[19,x]. We only have odd powers in the polynomials, because sign

is an odd function. We compute the coefficients with the inner product < . , . >w and

as demonstration also as Fourier coefficients of Sign[Cos[ϕ]]. We obtain the same

coefficients.

In[]:= f[x_] = Sign[x]

a0half := Integrate [f[x] ChebyshevT [0, x] / Sqrt[1 - x ^ 2], {x, -1, 1}] / Pi;

(* of course zero since f is odd *)

Fca0half := 1 / Pi Integrate [f[Cos[phi]], {phi, 0, 2 Pi}];

(*computed as Fourier coefficient *)

ak[k_] := 2 / Pi Integrate [f[x] ChebyshevT [k, x] / Sqrt[1 - x ^ 2], {x, -1, 1}] ;

(*by inner product *)

Fcak [k_] := 2 / Pi Integrate [f[Cos[phi]] Cos[k phi], {phi, 0, Pi}];

(* as Fourier coefficient *)

Out[]= Sign[x]

A short test that the same coefficients are computed .

104 Fourier Analysis with Mathematica 1

In[]:= a0half

ak[3] (* Coeff . zu T[3,x] *)

Fcak [3] (* same computed as Fourier coefficient of f(cos(ϕ) *)
Out[]= 0

Out[]= -
4

3 π

Out[]= -
4

3 π
Now the indicated approximations with 5, 9 and 19 Chebyshev polynomials. The

coefficients computed differently, in the last case by numerical integration.

In[]:= fct2[t_] = Sum[Fcak [k] ChebyshevT [k, t], {k, 1, 5}]

(* Näherung mit Polynomgrad 5 *)

Simplify [N[%]] (* hier numerisch *)

fct3[t_] = Sum[ak[k] ChebyshevT [k, t], {k, 1, 9}]

(* Näherung mit Polynomgrad 9 *)

Simplify [N[%]]

fct4[t_] = Simplify [N[2 / Pi] × Sum[

NIntegrate [f[Cos[x]] Cos[n x], {x, 0, Pi}] ChebyshevT [n, t], {n, 1, 19, 2}]] ;

Out[]=

4 t

π -
4 × -3 t + 4 t3

3 π +
4 × 5 t - 20 t3 + 16 t5

5 π
Out[]= 3.81972 t - 6.79061 t3 + 4.07437 t5

Out[]=

4 t

π -
4 × -3 t + 4 t3

3 π +
4 × 5 t - 20 t3 + 16 t5

5 π -

4 × -7 t + 56 t3 - 112 t5 + 64 t7
7 π +

4 × 9 t - 120 t3 + 432 t5 - 576 t7 + 256 t9
9 π

Out[]= 6.3662 t - 33.9531 t3 + 85.5617 t5 - 93.1284 t7 + 36.2166 t9

Below the plot of the approximations showing the Gibbs phenomenon

Chapter 3 Discrete Fourier Transforms 105

In[]:= g1 := Plot[f[t], {t, -1, 1}, Frame → True,

FrameStyle → Directive [Black , FontSize → 15,

FontWeight → Plain],

PlotStyle → {GrayLevel [0.0], Thickness [0.005]}]

g2 := Plot[fct2[t], {t, -1, 1}, Frame → True,

FrameStyle → Directive [Black , FontSize → 15, FontWeight → Plain],

PlotStyle → {GrayLevel [0.0], Dashing [0.01], Thickness [0.005]}]

g3 := Plot[fct3[t], {t, -1, 1}, Frame → True,

FrameStyle → Directive [Black , FontSize → 15, FontWeight → Plain],

PlotStyle → {GrayLevel [0.0], Dashing [0.02], Thickness [0.005]}]

g4 := Plot[fct4[t], {t, -1, 1}, Frame → True,

FrameStyle → Directive [Black , FontSize → 15, FontWeight → Plain],

PlotStyle → {GrayLevel [0.0], Thickness [0.005]}]

In[]:= Show [g1, g2, g3, g4, PlotRange → All]

Out[]=

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Comparison with interpolation by Legendre polynomials for sin(3x)

We had already shown before interpolation by Legendre polynomials. We compare

that with interpolation by Chebyshev polynomials and show the respective error

curves. We see that the error by Chebyshev interpolation near to the boundary points

-1,1 is much less than by Legendre interpolation, which is due to the weight function

in the space H.

In[]:= coeff1 [n_] := NIntegrate [LegendreP [n, x] Sin[3 x], {x, -1, 1}];

n2[x_] = Expand [Sum[coeff1 [n] LegendreP [n, x] / (2 / (2 n + 1)), {n, 0, 5}]]

(* Legendre interpolation polynomial *)

Out[]= 0. + 2.97177 x - 4.23916 x3 + 1.42043 x5

In[]:= f[x_] := Sin[3 x]

n3[x_] = Simplify [

N[2 / Pi Sum[Integrate [f[Cos[phi]] Cos[n phi], {phi, 0, Pi}] ChebyshevT [n, x],

{n, 1, 5}]]]

Out[]= 2.96278 x - 4.19364 x3 + 1.37691 x5

106 Fourier Analysis with Mathematica 1

In[]:=

p1 = Plot[f[x], {x, -1, 1},

PlotStyle → Directive [Blue, Thickness [0.005]], PlotRange → All,

PlotStyle → Directive [Blue, Thickness [0.005]], PlotRange → All];

In[]:= p3 = Plot[n3[x] + 0.05, {x, -1, 1},

PlotStyle → Directive [Red, Thickness [0.005]], PlotRange → All, PlotLegends →
Placed [{"Approximation by a Chebyshev Polynomial of Degree 5

shown in Red with offset +0.005 for better visibility "}, Above]];

Show [p1, p3]

Out[]=

Approximation by a Chebyshev Polynomial of Degree 5

shown in Red with offset +0.005 for better visibility

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

In[]:= p4 := Plot[Abs[Sin[3 x] - n2[x]], {x, -1, 1},

PlotStyle → Directive [Blue, Thickness [0.005]], PlotRange → All]

p5 := Plot[Abs[Sin[3 x] - n3[x]], {x, -1, 1}, PlotLegends →
Placed [{"Approximation Errors by a Chebyshev Polynomial of Degree 5

shown in Red versus Legendre Interpolation in Blue"}, Above],

PlotStyle → Directive [Red, Thickness [0.005]], PlotRange → All]

Below the errors of Legendre versus Chebyshev interpolation

The Chebyshev interpolation in red has greater errors in the interior of [-1,1], but is

much better at the boundary. This is an effect of the used weight function in the inner

product, which punishes errors at the boundary with greater norm.

Chapter 3 Discrete Fourier Transforms 107

In[]:= Show [p4, p5]

Out[]=

Approximation Errors by a Chebyshev Polynomial of Degree 5

shown in Red versus Legendre Interpolation in Blue

-1.0 -0.5 0.5 1.0

0.002

0.004

0.006

0.008

0.010

0.012

Connection with DCT I and DCT II, Example of C. Runge

In technical signal processing one often has the task to compute trigonometric or

polynomial approximations for a function from samples of a continuous signal. Then,

with the coefficients of an interpolation function the approximation is given by only a

few numbers, which can be processed. (Computers can only process numbers and

not continuous functions.)

Since Chebyshev polynomials are closely connected with Fourier series expansions,

we have the possibility to find polynomial interpolations with the help of a DCT I or a

DCT II. Then, the Fourier coefficients from above are replaced through their DCT

coefficients computed from samples of a function. From our knowledge of the DFT it

is obvious that alias effects must be observed. We treat this somewhat later below.

In the following we consider continuous, piecewise continuously differentiable func-

tions f on [-1,1]. By a parameter transformation, the results can also be used on other

intervals. This is left to the reader. One obtains the following interpolation formulas

(cf. [1], 6.6):

Interpolation with a DCT I:

 With the m+1 (m ϵ ℕ) interpolation nodes xn = cos(nπ/m), n=0,...,m in [-1,1]

 the polynomial

 P2,T (x) = C0+2 ∑k=1
m-1 Ck T[k,x] + CmT[m,x]

 is a real-valued interpolation polynomial for f. The coefficients Ck , k=0,..,m,

 are obtained by a DCT I of the samples f (xn), n=0,...,m.

108 Fourier Analysis with Mathematica 1

Interpolation with a DCT II and the so-called Chebyshev abscissa xn:

 With the m+1 (m ϵ ℕ) Chebyshev interpolation nodes xn = cos((2n+1)π /(2m+2)),

 n=0,...,m in [-1,1], i.e., with the zeros of T[m+1,x],

 P3,T (x) = A0 + ∑k=1
m Ak T [k, x]

 is a real-valued interpolation polynomial for f. The coefficients Ak , k=0,..,m,

 are obtained by a DCT II of the samples f (xn), n=0,...,m.

We consider again the famous example of the Runge function f (x) = 1  1 + 25 x 2)

on the interval [-1,1].

Polynomial interpolations for this example with equidistant nodes yield with increas -

ing number of nodes always worse approximations for f, while interpolation with

Chebyshev nodes yields with increasing numbers of nodes a sequence of interpola -

tion polynomials that converges uniformly to f.

At first the example with 7 and 17 equidistant nodes as illustration that these are bad

choices for polynomial approximations to f.

In[]:= f[x_] := 1 / (1 + 25 x ^ 2) (* The Runge example *)

a := -1; b := 1; (* Interval [a,b]*)

X[m_, n_] := a + (b - a) m / n; Y[m_, n_] := f[X[m, n]];

(* n+1 nodes X and samples Y of f *)

Lagr[n_, k_, x_] := 
j=0

k-1
x - X[j, n]

X[k, n] - X[j, n]


j=k+1

n
x - X[j, n]

X[k, n] - X[j, n]
;

InterpolyLagrange [n_, x_] := 
k=0

n

Y[k, n] × Lagr[n, k, x];

(* The Lagrange Interpolation Polynomial *)

plot1 := Plot[f[x], {x, a, b}, PlotStyle → Directive [

Black , Thickness [0.005]],

PlotRange → All, PlotLegends → {"Runge function "}]

plot2 := Plot[InterpolyLagrange [7, x], {x, a, b}, PlotStyle → Directive [

Red, Thickness [0.005]], PlotRange → All, PlotLegends → {"7 equidistant nodes

plot3 := Plot[InterpolyLagrange [17, x] + 0.1, {x, a, b}, PlotStyle → Directive [

Blue, Thickness [0.005]],

PlotRange → All, PlotLegends → {"17 equidistant nodes

with offset +0.1"}]

Chapter 3 Discrete Fourier Transforms 109

In[]:= Show [plot1, plot2, plot3]

Out[]=

-1.0 -0.5 0.5 1.0

-4

-3

-2

-1

1

Runge function

7 equidistant nodes

17 equidistant nodes

with offset +0.1

Instead, Interpolation with Chebyshev Polynomials

First with a DCT I. We use the Mathematica version of the DCT I.

You must observe that for the Mathematica-DCT compared to my notation here and

in [1] the scaling factor has to be adjusted. Here as prefactor 1/ 2 m , if we use m+1

samples of f in [-1,1], or in other words m+1 samples of f(cos(ϕ)) for ϕ ϵ [0,π]. I have

preferred the scaling factor so that the DCT coefficients correspond to the amplitudes

of the oscillations in the approximations.

(Hint: If you use implemented routines for a DFT (FFT), DCT in a program, test the

norming factors by simply treating a cosine with the routines. This can easily prevent

unpleasant surprises.)

We choose for the example 17 equidistant nodes in [0,π], starting at zero, and the

according samples of f(cos(ϕ)):

In[]:= m := 16; (* because numbering starts with zero *)

list1 := Table [f[Cos[n π /m]], {n, 0, m}]

Now the DCT I of Mathematica with the right factor. Each second coefficient is zero

according to the symmetry of f. We see the graphics of f (black) and its approximation

(red)

110 Fourier Analysis with Mathematica 1

In[]:= coeff = 1 / Sqrt[2 m] FourierDCT [list1, 1];

InterpolyTscheb1 [x_] = Simplify coeff 〚1〛+

2 
k=2

m

coeff [[k]] ChebyshevT [k - 1, x] + coeff 〚m + 1〛 ChebyshevT [m, x]

plot4 := Plot[InterpolyTscheb1 [x], {x, a, b}, PlotStyle → Directive [

Red, Thickness [0.003]], PlotRange → All]

Show [plot1, plot4]

Out[]= 1. - 18.4579 x2 + 180.138 x4 - 931.478 x6 + 2718.63 x8 -

4638.33 x10 + 4585.72 x12 - 2433.11 x14 + 535.928 x16

Out[]=

-1.0 -0.5 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

Runge function

The same game with a DCT II. We use the Mathematica version of the DCT II.

Again we have to adjust the norming factor in the DCT II of Mathematica, here the

factor 1/ m + 1 . We compute the interpolation polynomial, again with m+1=17

nodes and plot it together with the function von C. Runge:

In[]:= list2 := Table [N[f[Cos[(2 n + 1) π / (2 m + 2)]]], {n, 0, m}]

(* Samples at the Chebyshev abscissa *)

coeff2 = N[1 / Sqrt[m + 1]] × Chop [FourierDCT [list2, 2]]; (* DCT II of that list *)

In[]:= InterpolyTscheb2 [x_] = Simplify coeff2〚1〛+ 2 
k=2

m+1

coeff2〚k〛 ChebyshevT [k - 1, x]

(* resulting polynomial *)

Out[]= 1. - 19.192 x2 + 201.018 x4 - 1122.49 x6 + 3529.36 x8 -

6457.85 x10 + 6814.73 x12 - 3842.14 x14 + 895.603 x16

Chapter 3 Discrete Fourier Transforms 111

In[]:= plot5 := Plot[InterpolyTscheb2 [x], {x, a, b}, PlotStyle → Directive [

Red, Thickness [0.003]], PlotRange → All]

Show [plot1, plot5]

Out[]=

-1.0 -0.5 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

Runge function

As expected one can hardly distinguish both versions by looking at them. Thus, we

show the corresponding error functions, the error by the DCT I in red, by the DCT II

in blue. With increasing numbers m of nodes both interpolations yield also good

approximations considered on the entire interval [-1,1], which finally converge uni-

formly to f for m→∞.

The errors of the both interpolations

In[]:= plot6 := Plot[f[x] - InterpolyTscheb1 [x], {x, a, b}, PlotStyle → Directive [

Red, Thickness [0.005]], PlotRange → All,

PlotLegends → Placed [{"Error with DCT I, Red"}, Above]]

plot7 := Plot[f[x] - InterpolyTscheb2 [x], {x, a, b}, PlotStyle → Directive [

Blue, Thickness [0.005]], PlotRange → All,

PlotLegends → Placed [{"Error with DCT II, Blue"}, Below]]

Show [plot6, plot7]

Out[]=

Error with DCT I, Red

-1.0 -0.5 0.5 1.0

-0.03

-0.02

-0.01

0.01

0.02

0.03

0.04

Error with DCT II, Blue

112 Fourier Analysis with Mathematica 1

The Alias Effect with Chebyshev Polynomials

Since the considered interpolations by Chebshev polynomials are closely associated

with the DCT, it is obvious that alias effects are involved in the computation of the

coefficients as iin the DFT and DCT. As in a DFT with N samples over [0,T[all values

of the functions exp(ⅈ (k+mN)2πt/T) conincide at the sampling points you cannot

distinguish values of certain Chebyshev polynomials at the interpolation nodes. From

that point of view one can the approximation error of the interpolation polynomials

see as a consequence of alias effects in the polynomial coefficients and obtain error

estimates from that (see [8] for details).

For an illustration we consider the last case of an interpolation with the Chebyshev

abscissa xn = cos ((π(2 n + 1) / (2 m + 2)), n = 0, ..., m.

From T [k , Cos[xn]] = Cos[k xn] one gets with some computation work by the trigono -

metric addition theorems that

T[k,x] and (-1)l T [l (2 m + 2)±k,x] for l ϵ ℕ coincide on all nodes xn. For a continuous

function f on [-1,1] and its interpolation polynomial with m+1 Chebyshev abscissa as

nodes we obtain with the interpolation polynomial P3,T (x) = A0 + ∑k=1
m Ak T [k , x]:

For the coefficients Ak in P3,T above we have the following alias relation:

 For l ϵ ℕ , k ϵ ℕ0, the coefficients ak of f(x) =
a0

2
T[0,x] +∑k=1

∞ ak T [k, x]

 and the m+1 Chebyshev abscissa as nodes it holds for the coefficients Ak

 the alias relation

 Ak = Ck(ak +∑l=1
∞ (-1)l (al(2 m+2)+k + al(2 m+2)-k)

We demonstrate this effect with a simple example.

Example 18. We interpolate f(x) = T[9,x]+2 T[10,x] + 2 T[11,x] +T[20,x] +T[21,x] with 5

Chebyshev abscissa as nodes in [-1,1]. The coefficients

a10 = a11 = 2 und a20 = a21 = 1 yield by the alias effect with m=4 the interpolation

polynomial P3,T [x]=-T[0,x]-2T[1,x]=-1-2x, because

A0 =
1

2
× (-2 a10 + 2 a20) = -1 und A1 = -a11 - a9 + a21 = -2. We show P3,T and plot

the polynomial (red) and f (blue).

Of course it is obvious in advance that the number of nodes and thus the degree of the

according interpolation polynomial is by far not sufficient to approximate f with that

polynomial. It is simply demonstrated what finds its way into the coefficients Ak .

Chapter 3 Discrete Fourier Transforms 113

f[x_] := ChebyshevT [9, x] + 2 ChebyshevT [10, x] +

2 ChebyshevT [11, x] + ChebyshevT [20, x] + ChebyshevT [21, x]

m := 4

list4 := Table [N[f[Cos[(2 n + 1) π / (2 m + 2)]]], {n, 0, m}]

(* samples at the Chebyshev abscissa *)

coeff3 := N[1 / Sqrt[m + 1]] × Chop [FourierDCT [list4, 2]]

(* DCT II of the samples *)

InterpolyTscheb3 [x_] = Simplify coeff3〚1〛+ 2 
k=2

m+1

coeff3〚k〛 ChebyshevT [k - 1, x]

(* resulting polynomial *)

plot6 := Plot[f[x], {x, a, b}, PlotStyle → Directive [

Blue, Thickness [0.006]], PlotRange → All,

PlotLegends → Placed [{"The function f(x), Blue"}, Above]]

plot7 := Plot[InterpolyTscheb3 [x], {x, a, b}, PlotStyle → Directive [

Red, Thickness [0.005]], PlotRange → All,

PlotLegends → Placed [{"The interpolation with 5 Chebyshev nodes

and Alias Effects , Red"}, Below]]

Out[]= -1. - 2. x - 2.52051 × 10-9 x3

The coefficient for x3 comes from errors in the numerical computation of the DCT.

In[]:= Show [plot6, plot7]

Out[]=

The function f(x), Blue

-1.0 -0.5 0.5 1.0

-4

-2

2

4

6

The interpolation with 5 Chebyshev nodes

and Alias Effects , Red

114 Fourier Analysis with Mathematica 1

One must observe such effects, when one works with samples and interpolation

polynomials for example in non-linear equations and wants maybe approximate

terms like a function f 3 by a polynomial. Thus, you need a sufficient number of sam-

ples for a good approximation of a function f. If interested, you can find error esti-

mates in [2].

Exercise. Derive a corresponding alias relation for the interpolation with the nodes

xn = cos (n π /m), n = 0, ..., m in [-1, 1] and test your formula.

An Extremal Property of the Chebyshev Polynomials

Finally in that section we will illustrate the following extremal property of Chebyshev

polynomials, which plays a role in circuit design in electrical engineering, where

Chebyshev filters are widely used due to their damping properties outside of the

passband of lowpass filters. It is proven in [1], 6.7.

It holds the following theorem:

1. For every x0 outside of [-1,1] the polynomial T [n, x] / T [n, x0] has minimal

 supremum norm compared with all polynomials P with degree n and P(x0) = 1 .

2. Compared with all polynomials P of degree n with |P(x)|⩽ 1 on [-1,1] the Chebyshev

 polynomial T[n,x] increases fastest outside of [-1,1] , i.e., there holds |T[n,x]|⩾ |P(x)|.

Chapter 3 Discrete Fourier Transforms 115

Example 19. We consider as last example in that section the graphs of a Legendre

polynomial and a Chebyshev polynomial of the first kind with equal degrees in [-4,4]

and see the different growth in the complement of [-1,1].

In[]:= plot8 := Plot[LegendreP [6, x], {x, -4, 4}, PlotStyle → Directive [

Blue, Thickness [0.006]], PlotRange → All,

PlotLegends → Placed [{"Legendre Polynomial of Degree 6"}, Below]]

plot9 := Plot[ChebyshevT [6, x], {x, -4, 4}, PlotStyle → Directive [

Red, Thickness [0.006]], PlotRange → All,

PlotLegends → Placed [{"Chebyshev Polynomial of Degree 6"}, Above]]

Show [plot8, plot9]

Out[]=

Chebyshev Polynomial of Degree 6

-4 -2 2 4

20000

40000

60000

80000

100000

120000

Legendre Polynomial of Degree 6

116 Fourier Analysis with Mathematica 1

4 The DCT 2D, JPEG, Huffman Code

4.1 DCT-2D, JPEG

We see how the DCT II is defined for 2D signals and apply it to an example from

image processing.

For the definition I have simply copied the following section from [1], 6.9

Out[]=

The DCT-2D is widely used in image processing, for example in image compression.

We consider the case of the well-know JPEG compression as example and explore

some of its properties.

In JPEG compression an image is divided into 8x8 or 16x16 pixel blocks, which are

transformed with a DCT-2D. The results are quantized per block. This is done so that

the according DCT coefficients of such blocks of a grayscale matrix, depending on

their position in the coefficient matrix, are divided by accordingly positioned values

of a so-called luminance table and rounded to integers. The values of the luminance

table depend on the desired compression ratio . In the following example such a

luminance table is shown and used.

JPEG

An 8x8 Luminance Table for JPEG

In[]:= qLum = {{16, 11, 10, 16, 24, 40, 51, 61},

{12, 12, 14, 19, 26, 58, 60, 55}, {14, 13, 16, 24, 40, 57, 69, 56},

{14, 17, 22, 29, 51, 87, 80, 62}, {18, 22, 37, 56, 68, 109, 103, 77},

{24, 35, 55, 64, 81, 104, 113, 92}, {49, 64, 78, 87, 103, 121, 120, 101},

{72, 92, 95, 98, 112, 100, 103, 99}}; qLum // MatrixForm

Out[]//MatrixForm=

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Since the DCT coefficients for higher frequency components usually decrease rapidly

and the divisors of the table for such coefficients increase, one mostly gets many zeros

in the high frequencies as a result of quantization. These quantized spectral data can

be stored or transmitted in compressed form by entropy encoding. When transmit -

ting a JPEG image, the used encoding method (e.g. Huffman table, not uniquely deter -

mined) is specified in the file header as necessary information for decoding. At the

viewer, the data stream is decoded back into the DCT matrix and subjected to IDC-

T-2D block by block. As a rule, the IDCT data for the image must also be rendered

again if there are values, which do not belong to integers in [0,255]. In color images,

the color information is quantized analogously with chrominance tables. The quantiza -

tion can lead to undesired artifacts in the neighborhood of edges in combination with

the Gibbs phenomenon, since the IDCT after compression usually yields a trigonomet -

ric interpolation polynomial different from that of the original DCT data. This can be

quickly verified by zooming in on the edges in a JPEG image as we will see in the

following example.

118 Fourier Analysis with Mathematica 1

Example 20. We load a test image and use the Mathematica JPEG algorithm to

analyze some effects.

In[]:= testimage = Import ["/home /rolf /Desktop /MATHEMATICA -NEW /Testimage .bmp"]

Out[]=

In[]:= ImageDimensions [testimage] (* Check Pixel numbers *)

imagedata = ImageData [ImageTake [testimage , {137, 144}, {257, 264}], "Byte"];

imagedata // MatrixForm

(* 8x8 Pixel Block at the edge of the rectangle upper left in byte form *)

Out[]= {960, 534}

Out[]//MatrixForm=

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 0 0 0 0 0 0

255 255 0 0 0 0 0 0

255 255 0 0 0 0 0 0

255 255 0 0 0 0 0 0

255 255 0 0 0 0 0 0

Chapter 4 The DCT 2D, JPEG, Huffman Code 119

In[]:= image2 = Image [imagedata , Magnification → 20, ImageSize → 150];

Show [image2 , Frame → True, FrameStyle → Black]

(* Edge upper left of the rectangle . Shown are 8x8 Pixel *)

Out[]=

0 2 4 6 8
0

2

4

6

8

Below the jpeg compressed image . On closer inspection one recognizes artefacts at

the boundaries of the figures. They are caused by aliasing and the Gibbs phenomenon

in the DCT approximation. Here we use the jpeg compression implemented in Mathe -

matica. Below we do this ourselves to see better what’s going on.

In[]:= Export ["testimage .jpeg", testimage ,

ColorSpace → "Grayscale ", "CompressionLevel " → 1.0];

testimagejpeg = Import ["testimage .jpeg"]

(* Size of originally 512 KB compressed to 9 KB *)

Out[]=

We look again at the left upper edge of the rectangle

120 Fourier Analysis with Mathematica 1

In[]:= image3data = ImageData [ImageTake [testimagejpeg , {137, 144}, {257, 264}], "Byte"];

image3data // MatrixForm (*The same section as above ,

now from the new image data matrix . The changes are obvious .*)

image3 = Image [image3data , "Byte", ImageSize → 150] ;

Show [image3 , Frame → True, FrameStyle → Black]
Out[]//MatrixForm=

255 255 248 255 255 255 250 190

255 255 255 255 255 255 255 208

255 255 200 194 223 228 185 136

225 149 67 41 61 69 38 0

219 127 19 0 0 0 0 0

255 194 62 0 0 11 3 0

255 212 62 0 0 0 0 0

255 164 5 0 0 0 0 0

Out[]=

0 2 4 6 8
0

2

4

6

8

Analogously music is distorted, if it is saved compressed as MP3 files. The edges of an

image correspond in acoustics major changes in the dynamic of a music piece. Delet -

ing of small DCT coefficients - mostly corresponding to high frequencies - diminishes

the bandwidth and cancels overtones. Let’s do the compression ourselves for the

considered 8x8 block.

Chapter 4 The DCT 2D, JPEG, Huffman Code 121

In[]:= dctblock = FourierDCT [imagedata]; dctblock // MatrixForm (* DCT of the block*)

jpegblock =

Table [Sign[dctblock 〚i, j〛] Floor [Abs[dctblock 〚i, j〛 / qLum〚i, j〛]], {i, 1, 8}, {j, 1, 8}];

jpegblock // MatrixForm (* The resulting data for the JPEG format -

now with many zeros . Rounded to zero direction *)

Out[]//MatrixForm=

1083.75 288.828 208.233 101.423 0. -67.7686 -86.2531 -57.4515

452.847 -136.779 -98.6121 -48.0304 0. 32.0929 40.8465 27.207

176.692 -53.3685 -38.4765 -18.7405 0. 12.522 15.9375 10.6157

-65.8676 19.8948 14.3434 6.98613 0. -4.66799 -5.94122 -3.95733

-135.234 40.8465 29.4487 14.3434 0. -9.58393 -12.198 -8.12487

-44.0114 13.2933 9.58393 4.66799 0. -3.11905 -3.9698 -2.6442

73.1882 -22.1059 -15.9375 -7.76258 0. 5.18679 6.60153 4.39715

90.0768 -27.207 -19.6152 -9.55383 0. 6.38367 8.12487 5.41181

Out[]//MatrixForm=

67 26 20 6 0 -1 -1 0

37 -11 -7 -2 0 0 0 0

12 -4 -2 0 0 0 0 0

-4 1 0 0 0 0 0 0

-7 1 0 0 0 0 0 0

-1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

The data in a segment of a JPEG file are thus DCT coefficients . Thus, the viewer

always needs a program (browser, image viewer) that generates by a IDCT again an

image from the data - hopefully in realtime. The decoder program therefore must

know for reconstruction the used luminance table, which is transmitted in a JPEG file

(there in segment FF DB).

The DCT data are usually stored and transmitted with a Huffman code . Only with

that coding of the data, which now as rule contain many zeros, a data compression is

achieved. A Huffman code is not uniquely determined as we will see below. In the

header of each JPEG file - in segment FF C4 (DHT "Definition of Huffman Table") - is

defined, which Huffman code was used for the data. Each viewer program must then

generate per image block the corresponding code table to correctly decode it.

122 Fourier Analysis with Mathematica 1

Image reconstruction

For image reconstruction it is requantized with the same luminance table, i.e., the

elements of the last matrix above are multiplied per element with the coefficients of

the luminance matrix. We proceed with the data block above.

In[]:= blockrequant = Table [jpegblock qLum];

blockrequant // MatrixForm (* compare with the matrix dctblock above *)

imagesection = FourierDCT [blockrequant , 3];

imagesection // MatrixForm (* Result after backwards transform *)
Out[]//MatrixForm=

1072 286 200 96 0 -40 -51 0

444 -132 -98 -38 0 0 0 0

168 -52 -32 0 0 0 0 0

-56 17 0 0 0 0 0 0

-126 22 0 0 0 0 0 0

-24 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0

72 0 0 0 0 0 0 0

Out[]//MatrixForm=

232.424 266.247 237.206 257.599 281.129 254.306 252.728 239.335

248.509 270.827 227.428 240.51 267.331 250.489 259.007 251.401

296.274 294.574 218.665 208.702 229.084 217.085 232.532 228.796

216.537 185.044 67.8716 26.0159 31.7552 16.3546 30.8313 25.7937

261.305 206.599 59.2583 -2.47993 -2.23629 -16.8252 -3.25102 -10.8073

274.018 207.74 48.739 -14.1592 -5.43848 -11.4411 4.25628 -5.12619

279.142 208.043 46.2578 -12.0838 5.72693 5.65908 20.5211 7.69597

270.516 196.841 33.1335 -24.2175 -4.27453 -4.80511 6.07901 -10.7755

We see the mentioned alias and Gibbs effect with real values outside of the greyscale

with integers from zero to 255.

Thus, the image must be rastered again . We do this ourselves by replacing negative

values by zero, those greater than 255 by 255, and otherwise we round off. Afterwards

we look at the result.

Chapter 4 The DCT 2D, JPEG, Huffman Code 123

In[]:= imageraster1 = Table [Max [{imagesection 〚i, j〛, 0}], {i, 1, 8}, {j, 1, 8}];

imageraster = Table [Floor [Min[{imageraster1 〚i, j〛, 255}]], {i, 1, 8}, {j, 1, 8}];

imageraster // MatrixForm

Out[]//MatrixForm=

232 255 237 255 255 254 252 239

248 255 227 240 255 250 255 251

255 255 218 208 229 217 232 228

216 185 67 26 31 16 30 25

255 206 59 0 0 0 0 0

255 207 48 0 0 0 4 0

255 208 46 0 5 5 20 7

255 196 33 0 0 0 6 0

In[]:= jpegimageresult = Image [imageraster , "Byte"] ;

Show [jpegimageresult , Frame → True, FrameStyle → Black]

Out[]=

0 2 4 6 8
0

2

4

6

8

124 Fourier Analysis with Mathematica 1

4.2 Huffman Coding

Even if it is not actual Fourier analysis, but closely connected with its everyday use in

image processing, we finally explain for our example how a possible Huffman code for

the elements in our 8x8-Matrix jpegblock above is generated. For simplicity, we do

not use rearrangement or run lengths. Only the principle of Huffman coding is

explained.

At first we flatten our 8x8-Matrix jpegblock above. The resulting list has 64 elements.

In[]:= data = Flatten [jpegblock]

Out[]= {67, 26, 20, 6, 0, -1, -1, 0, 37, -11, -7, -2, 0, 0, 0, 0, 12,

-4, -2, 0, 0, 0, 0, 0, -4, 1, 0, 0, 0, 0, 0, 0, -7, 1, 0, 0, 0, 0, 0, 0,

-1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}

Huffman coding is done in 3 steps, the decoding in one step.

1) At first a character frequency table of the coefficients in the list is generated. The

result contains the coefficients with increasing frequency, in the example for instance

{2,-7} as list element, because -7 appears two times in the coefficient matrix. Here the

used function and the result for that:

In[]:= getCharFreqTable [data_List] := Sort[{Count [Flatten [# & /@ data], #〚1〛], #〚1〛} & /@

Transpose [{Union [Flatten [# & /@ data]]}]];

getCharFreqTable [

data]

Out[]= {{1, -11}, {1, 6}, {1, 12}, {1, 20}, {1, 26}, {1, 37},

{1, 67}, {2, -7}, {2, -4}, {2, -2}, {3, -1}, {4, 1}, {44, 0}}

2) From that list a Huffman tree is generated in which nodes and edges are repre -

sented by a binary string. There are always exactly 2 paths that we can choose from a

node to a leaf or another node. These are represented by a 1 or a 0. The optimal tree

structure is achieved by recursion (reduction), which processes the coefficients based

on their respective frequency.

In[]:= getHuffmanTree [data_List] :=

Nest[Sort[Delete [ReplacePart [#, {Plus @@ (Transpose [Take[#, {1, 2}]]〚1〛),

Take[#, {1, 2}]}, {1}], {2}]] &,

getCharFreqTable [data], Length [getCharFreqTable [data]] - 1]〚1, 2〛

This function works as follows:

The process starts by placing the first two coefficients of the ordered frequency table

above into a character set under a node. The frequency of this character set is then

defined as the sum of the frequencies of the characters it contains. In the example

with {1,-11} and {1,6}, 2 is the sum of the two frequencies in these elements.

Chapter 4 The DCT 2D, JPEG, Huffman Code 125

Example:

In[]:= {Plus @@ (Transpose [Take[#, {1, 2}]]〚1〛), Take[#, {1, 2}]} &@getCharFreqTable [data]

Out[]= {2, {{1, -11}, {1, 6}}}

The result then replaces the first two entries in the freqency table. In the example:

In[]:= (Delete [ReplacePart [#, {Plus @@ (Transpose [Take[#, {1, 2}]]〚1〛), Take[#, {1, 2}]},

{1}], {2}] &@getCharFreqTable [data])

Out[]= {{2, {{1, -11}, {1, 6}}}, {1, 12}, {1, 20}, {1, 26}, {1, 37},

{1, 67}, {2, -7}, {2, -4}, {2, -2}, {3, -1}, {4, 1}, {44, 0}}

Now it is again sorted with increasing frequencies :

In[]:= (Sort[Delete [ReplacePart [#, {Plus @@ (Transpose [Take[#, {1, 2}]]〚1〛),

Take[#, {1, 2}]}, {1}], {2}]] &@getCharFreqTable [data])

Out[]= {{1, 12}, {1, 20}, {1, 26}, {1, 37}, {1, 67}, {2, -7},

{2, -4}, {2, -2}, {2, {{1, -11}, {1, 6}}}, {3, -1}, {4, 1}, {44, 0}}

This process is continued by placing the first two resulting entries, whether a single

coefficient or a group of coefficients, under a node.

The recursion ends with the full Huffman tree, here in the form of a “nested list”,

which we call “hTree”.

In[]:= hTree = getHuffmanTree [data]

Out[]= {{20, {{8, {{4, {{2, -4}, {2, -2}}}, {4, {{2, {{1, -11}, {1, 6}}}, {2, {{1, 12}, {1, 20}}}}}}},

{12, {{5, {{2, {{1, 26}, {1, 37}}}, {3, -1}}},

{7, {{3, {{1, 67}, {2, -7}}}, {4, 1}}}}}}}, {44, 0}}

3) Below is how to generate a Huffman code from this:

The code of a character in our data is uniquely determined by its position in hTree.

From the positions of the characters we generate code words and thus a “code list”

analogous to “data”. We then output the bit stream that encodes the entire list. You

can see that data elements receive shorter code words the greater their frequency in

the list to be list to be encoded. (Task: Analyze the two following functions). Below the

resulting bitstream that encodes the example.

126 Fourier Analysis with Mathematica 1

In[]:= encodeChar [c_, tree_List] := (list = Flatten [Position [tree, {_, c}]];

b = Table [ToString [list〚i〛- 1], {i, 1, Length [list], 2}];

StringJoin [b])

encode [charlist_ , tree_] :=

Table [encodeChar [charlist 〚n〛, tree], {n, Length [charlist]}]

codelist = encode [data, hTree]

bitstream = {StringJoin [codelist]}

StringLength [bitstream 〚1〛]

Out[]= {01100 , 01000 , 00111 , 00101 , 1, 0101, 0101, 1, 01001 , 00100 , 01101 , 0001, 1, 1, 1, 1,

00110 , 0000, 0001, 1, 1, 1, 1, 1, 0000, 0111, 1, 1, 1, 1, 1, 1, 01101 , 0111, 1, 1, 1,

1, 1, 1, 0101, 1, 1, 1, 1, 1, 1, 1, 0111, 1, 1, 1, 1, 1, 1, 1, 0111, 1, 1, 1, 1, 1, 1, 1}

Out[]= {01100010000011100101101010101101001001000110100011111001100000000111111

00000111111111011010111111111010111111110111111111101111111111 }

Out[]= 133

A quick recalculation shows : Encoding the 64 numbers as 8 - bit words would require

512 bits . Coding as above would require a bit stream with a length of only 133 bits, i.

e., would only use about 1/4 of the previous memory space . A more clever arrange -

ment according to a zigzag pattern as mentioned above and representation of the

resulting terminating sequence with 35 zeros by a single code word would save

another 26 % .

The CCITT coding uses de facto Difference Coding, one zigzag pattern per block and

run-length code .

Mathematica offers an implemeted command TreeForm for a plot a the correspond -

ing tree.

Chapter 4 The DCT 2D, JPEG, Huffman Code 127

In[]:= TreeForm [hTree]

Out[]//TreeForm=

List

List

20List

List

8 List

List

4 List

List

2 -4

List

2 -2

List

4 List

List

2 List

List

1 -11

List

1 6

List

2 List

List

1 12

List

1 20

List

12List

List

5 List

List

2 List

List

1 26

List

1 37

List

3 -1

List

7 List

List

3 List

List

1 67

List

2 -7

List

4 1

List

44 0

Now the Decoding

We first generate a list that shows the assignment of the matrix coefficients and their

code words in pairs. We call the list "translationTable".

Then - programmed as a loop - we process the bitstream by combining characters of

the 0-1 sequence with the StringTake command until we find the first code word in

translationTable. It is in the second component of a hit. Then we assign the first com-

ponent of this hit - the encoded character - to the result component "result[[1]]" and

delete the decoded bit sequence from 'stream' using StringDrop. The procedure is

then repeated in a loop until all entries "result[[n]]" are available for all n, 1⩽n⩽64.

128 Fourier Analysis with Mathematica 1

In[]:= huffmanTable [data_List , code_List] := Table [{data〚i〛, code〚i〛}, {i, Length [data]}]

translationTable = Union [huffmanTable [data, codelist]]

result = Table [NULL , {n, 64}];

stream = bitstream ;

Out[]= {{-11, 00100 }, {-7, 01101 }, {-4, 0000}, {-2, 0001}, {-1, 0101}, {0, 1}, {1, 0111},

{6, 00101 }, {12, 00110 }, {20, 00111 }, {26, 01000 }, {37, 01001 }, {67, 01100 }}

In[]:= For[n = 1, n ≤ 64, n++,

For[m = 1, m ≤ 64 && result〚n〛 ⩵ NULL , m++,

(a := StringTake [stream , m];

If[MemberQ [translationTable , {_, a〚1〛}],

(b := Position [translationTable , {_, a〚1〛}];

result〚n〛 = translationTable 〚b〚1〛〛〚1〛〚1〛;

stream = StringDrop [stream , m];)])]]

ArrayReshape [result , {8, 8}] // MatrixForm

Out[]//MatrixForm=

67 26 20 6 0 -1 -1 0

37 -11 -7 -2 0 0 0 0

12 -4 -2 0 0 0 0 0

-4 1 0 0 0 0 0 0

-7 1 0 0 0 0 0 0

-1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

In[]:=

Above, the encoded and again re-decoded matrix, and below for comparison the

matrix jpegblock from p. 122 to check that everything worked well.

In[]:= jpegblock // MatrixForm

Out[]//MatrixForm=

67 26 20 6 0 -1 -1 0

37 -11 -7 -2 0 0 0 0

12 -4 -2 0 0 0 0 0

-4 1 0 0 0 0 0 0

-7 1 0 0 0 0 0 0

-1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

Chapter 4 The DCT 2D, JPEG, Huffman Code 129

References

 [1] Brigola, R. Fourier Analysis and Distributions,

 A First Course with Applications,

 Springer, 2025

 [2] Briggs, W. L., Van Emden Henson The DFT, An Owners Manual for the Discrete

 Fourier Transform, SIAM, 1995

 [3] Brown, J. W., Churchill, R. V. Fourier Series and Boundary Value Problems,

 McGraw Hill, 2011

 [4] Couch, L. W. Digital and Analog Communication Systems,

 Pearson, Prentice Hall, 2012

 [5] Courant, R., Hilbert, D. Methods of Mathematical Physics, Wiley-VCH,

 New York, 1993

 [6] Dautray, R., Lions, J. L. Mathematical Analysis and Numerical

 Methods for Science and Technology,

 6 Vol., Springer, 1992

 [7] Kammeyer, K.-D., Kroschel, K. Digitale Signalverarbeitung, Springer, 2002

 [8] Mason, J. C., Handscomb, D. Chebyshev Polynomials, CRC Press, 2002

 [9] Mint-U, T., Debnath, L. Linear Partial Differential Equations for

 Scientists and Engineers, Birkhäuser, 2006

[10] Tolstov, G. P. Fourier Series, Dover, New York, 1976

[11] Zygmund, A. Trigonometric Series,

 Cambridge University Press, 2003

130 Fourier Analysis with Mathematica 1

