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Preface

Fourier series are fundamental mathematical tools for describing and 

solving a wide array of technical and scientific problems. These include 

areas of physics, mechanical engineering, electrical engineering, and 

signal and control theory. This text is intended for readers seeking to 

understand the theoretical foundation of Fourier analysis methods, and 

their practical applications. 

Students of mathematics or engineering learn the basics on Fourier series 

representations of periodic functions in their early math courses. 

Nowadays, Fourier series build the mathematical foundation of a myriad 

of applications that largely permeate our everyday lives, from basic 

electrical engineering, medicine and chemistry to modern signal 

processing in communication devices and computational mathematics in 

any scientific application areas.

The text incorporates insights from many years of lectures delivered to 

students of applied mathematics, physics, electrical engineering, and 

communications engineering at the Technische Hochschule Nürnberg 

Georg Simon Ohm, starting in their second semester. 

This booklet has its focus on showing how theoretical results on Fourier 

series can be used in applications and examples with the help of the 

computeralgebra system Mathematica. Thus, no proofs of used  

theorems and properties of Fourier series are given in the text. Instead, it 

is demonstrated how to comprehend properties and applications of 

Fourier series with the help of Mathematica, which frees us from time-

consuming own calculations and gives us the opportunity to understand 

the subject matter with clear illustrations.

In the present 2nd edition of this text, I have corrected a few typos,   

have (hopefully) improved some explanations and have added a new 

section on a Ritz-Galerkin solution for a Dirichlet boundary value 

problem on a rectangle. Due to the simple shape of the region, a Ritz-

Galerkin solution with Fourier series is possible. The principle is 

already a preparation for solutions on more complicated regions by the 



Finite Element method (FEM). This shall be a topic with regard to 

distribution theory in a subsequent booklet, which is in progress. 

The extended theory of Fourier transforms has its main success in 

connection with distribution theory. Typical applications with the 

help of Mathematica will be treated in a future booklet on Fourier 

Analysis with Mathematica 2. 

For the theory with proofs of the theorems and detailed examples, 

exercises and their solutions it is referred to the authors textbook 

Fourier Analysis with Distributions

A First Course with Applications

Springer, Text in Applied Mathematics 79, 2025

Rolf Brigola

Nürnberg, Germany, 2025

https://link.springer.com/book/10.1007/978-3-031-81311-5?sap-outbound-id=8AB8B454F0CD313E3958F5E2D2C1906274DE3E6E&utm_source=standard&utm_medium=email&utm_campaign=000_LAN36_0000019083_Book+author+congrats+NEW&utm_content=EN_34155_20250412&mkt-key=5588F17DFAB21FE085970932ABCA98B4
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Rolf Brigola

Fourier  Analysis  with  Mathematica  1

Learning  Fourier  Series  by Examples

1   Basics on Fourier  Series with Mathematica    

Fourier  analysis  dates  back  to  the  ideas  of  Daniel  Bernoulli  (1700-1782)  and  French  mathe -

matician  Jean-Baptiste  Joseph  Fourier  (1768-1830).

Historically,  it  started  with  the  represention  of  solutions  for  heat  and  wave  equations  as

superpositions  of trigonometric  functions.  Students  of mathematics  or engineering  learn  the

basics  on  Fourier  series  representations  of  periodic  functions  in  their  early  math  courses.  In

more  advanced  studies,  Fourier  analysis  is  developed  to  describe  and  solve  a wide  variety  of

problems  in mathematics,  natural  sciences  and  engineering.  Nowadays,  it builds  the  mathe -

matical  foundation  of  a  myriad  of  applications  that  largely  permeate  our  everyday  lives,

from  basic  electrical  engineering,  medicine  and  chemistry  to  modern  signal  processing  in

communication  devices  and computational  mathematics  in any scientific  application  areas.

The  presented  text  here  and  in  subsequent  parts  is  tailored  to  show  how  certain  types  of

linear  problems  can  be  solved  with  the  help  of  Fourier  Analysis  and  its  application  with

Mathematica.  For  the  theoretical  background,  the  definitions,  the  theorems  and  their  proofs

I refer  to my textbook  as [1]

Rolf  Brigola  (2025)  Fourier  Analysis  and  Distributions,  A  First  Course  with  Applications,

Springer's  TAM  series,  Vol.  79.

Thus,  in  a  certain  sense,  this  book  can  be  understood  as  a  supplement  for  the  above,  show -

ing  how  one  possibly  can  avoid  some  boring  own  calculations,  how  to  solve  treated  prob -

lems  and  how  to  generate  illustrative  graphics  with  the  help  of  Mathematica  or  an  equiva -

lent computer  algebra  system.

We  start  with  Fourier  series  and  some  of  their  applications.  In  subsequent  booklets  we  treat

distributions,  the  Fourier  transform  and  applications  like  linear  filter  design,  sampling  and

more.  This  volume  is  related  to  the  chapters  1-7  of  my  above  indicated  textbook.  The  aim  is

to  first  introduce  and  remind  users  of  some  basics  about  Fourier  series  with  the  help  of

Mathematica.  It  will  show  Mathematica  commands  that  can  be  used  to  calculate  Fourier

series  and  to generate  graphics  to illustrate  the facts.  Typical  application  examples  of Fourier

Series  are  shown,  which  demonstrate  the  benefits  of  Fourier  analysis  for  approximation

tasks  and  signal  processing.  Subsequently,  we  will  look  at  the  DFT,  DCT  and  Chebyshev

polynomials  and some  of their  typical  properties  that are relevant  for applications.

https://www.amazon.de/Fourier-Analysis-Distributions-Applications-Mathematics/dp/3031813103/ref=sr_1_2?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=I57AFX8NIZ9E&dib=eyJ2IjoiMSJ9.EVyJBuIi0mk8ftjDmtbfPpYdGQijsttZ3kLr5ecyuzyENhQAGXezcx5vN595No-PEnVvYRQrviHOZHYKoMlMVjm9JSfu6l8nX3Ws9itlpXw.aUyJ7HOeLTaNG-F6hEeYRzQX3CuJL8sBBZI4ndwwe2s&dib_tag=se&keywords=Rolf+Brigola&qid=1738408368&s=books&sprefix=rolf+brigola%2Cstripbooks%2C132&sr=1-2
https://www.amazon.de/Fourier-Analysis-Distributions-Applications-Mathematics/dp/3031813103/ref=sr_1_2?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=I57AFX8NIZ9E&dib=eyJ2IjoiMSJ9.EVyJBuIi0mk8ftjDmtbfPpYdGQijsttZ3kLr5ecyuzyENhQAGXezcx5vN595No-PEnVvYRQrviHOZHYKoMlMVjm9JSfu6l8nX3Ws9itlpXw.aUyJ7HOeLTaNG-F6hEeYRzQX3CuJL8sBBZI4ndwwe2s&dib_tag=se&keywords=Rolf+Brigola&qid=1738408368&s=books&sprefix=rolf+brigola%2Cstripbooks%2C132&sr=1-2


Author's  note:  I am not  really  an expert  on the almost  inexhaustible  possibilities  offered  by a

really  practiced,  in-depth  use  of  Mathematica.  I  have  therefore  essentially  tried  to  illustrate

the  mathematical  material  with  this  offer  and  to  show  how  the  content  covered  can  be

accessed  with  Mathematica  instructions  (some  of which  are  probably  often  too complicated,

but  also  transparent  for  Mathematica  beginners).  I  trust  that  readers  will  become  familiar

with  Mathematica  commands  and  options  (especially  with  the  numerous  possible  graphics

options)  by inspecting  the given  examples  and using  analog  versions  in own examples.

With  regard  to  many  application  examples  in  the  text,  I  often  call  the  variable  of  Fourier

series  a “time”  parameter.  Of  course  it changes  its  meaning  depending  on the  specific  appli -

cation  examples  from  physics  or other  fields.  For the mathematics,  this makes  no difference.

Details  on  all  Mathematica  commands  and  options  can  easily  be  found  by  the  online  help

system  of  Mathematica.  For  certain  aspects  of  Mathematica  such  as  programming  one  can

also  easily  find  tutorials  and  other  sources  by  searching  the  internet.  The  contents  were  all

written  with  Mathematica.  The  examples  can  also  be treated  with  corresponding  commands

in other  computer  algebra  or numerical  systems  like Maple,  Matlab et al. 
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1.1  Dirichlet  and  Fej ér Kernels

Dirichlet  kernels  and Fejér  kernels  play a fundamental  role in the study  of Fourier  series.  

Partial  sums  of Fourier  series  of periodic  functions  are convolutions  with Dirichlet  kernels  

(cf. the above  mentioned  book,  chapter  3, 4 and chapter  7). 

At first  I define  some  functions.  Here  I use two functions  for calculating  Fourier  coefficients  

and Fourier  expansions  for periodic  functions  defined  on an interval  [a,b]  with  period  (b-a).  

The reason  is that Mathematica  offers  only  the respective  commands  for  periodic  functions  

defined  on a symmetric  interval  around  zero (see below).  One can save own functions  in an 

m-file  and load this at the beginning  of a notebook  to have  them  available.  

 Defining  of own functions  for Fourier  coefficients  and expansion:  

In[  ]:= fourcoeffc [f_, A_, B_, k_] :=

1 / (B - A) Integrate [f[t] Exp[- I k t 2 Pi / (B - A)], {t, A, B}]

(* Calculate the k-th complex Fourier coeff . *)

fourpolynomial [f_, A_, B_, n_] :=

FullSimplify [Refine [Sum[fourcoeffc [f , A, B, k] Exp[I k t 2 Pi / (B - A)], {k, -n, n}],

{Element [k, Integers ]}]]

(* Calculate the fourier expansion as trig. polynomials up to degree n *)

b[k_, A_, B_] := FullSimplify [I (fourcoeffc [f , A, B, k] - fourcoeffc [f , A, B, -k])]

(* Sin-coeff b_k *)

a[k_, A_, B_] := FullSimplify [ (fourcoeffc [f , A, B, k] + fourcoeffc [f , A, B, -k])]

(* Cos-coeff a_k *)

1. Dirichlet   Kernels

We consider  the 2π - periodic  Dirichlet  kernel  Dir[t,  N] of degree  N≥1 :

In[  ]:= Dir[t_, N_] = Simplify [1 + 2 Sum[Cos[k t], {k, 1, N}]]

Out[  ]= 1 + 2 Cos 1

2
× (1 + N) t Csc t

2
 SinN t

2


In a trigonometric  form

In[  ]:= TrigToExp [%]

Out[  ]= 1 +

ⅇ-
1

2
ⅈ N t

- ⅇ ⅈ N t

2  ⅇ-
1

2
ⅈ (1+N) t

+ ⅇ 1

2
ⅈ (1+N) t

ⅇ-
ⅈ t
2 - ⅇ ⅈ t

2
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Example  1.  As  illustration  the  Dirichlet  kernels  of  degrees  3  and  6  are  shown.  They  oscillate

more  and more  with increasing  degrees  N. At no point  exists  a limit  for N -> ∞.

In[  ]:= g1 := Plot[Dir[t, 3], {t, - 2 Pi, 2 Pi}, PlotStyle → Directive [

Red, Thickness [0.006 ]], PlotRange → All, PlotLabels → Style["Dir[t,3]", 14]]

g2 := Plot[Dir[t, 6], {t, - 2 Pi, 2 Pi}, PlotStyle → Directive [

Blue, Thickness [0.006 ]], PlotRange → All, PlotLabels → Style["Dir[t,6]", 14]]

Show [g1, g2, ImageSize → Medium ]

Out[  ]=

Dir[t,3]

Dir[t,6]

-6 -4 -2 2 4 6

5

10

We  observe  that  a  Dirichlet  kernel  of  degree  N  has  the  maximum  possible  number  of  2N

zeros  per period.

Dirichlet  kernels  of other  periods  also have  2N zeros  per period.

The mean  values  of the Dirichlet  kernels  over  one period  are one.  Here  as example:

In[  ]:= Integrate [Dir[t, 5], {t, 0, 2 Pi}] / (2 Pi)

Out[  ]= 1
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2. The Fourier  Series  of the Sawtooth

Example  2.  As first  periodic  function  we consider  the  2π-periodic  sawtooth  in the time  inter -

val from  - 4π to 2π .

At  first  the  section  on  [0,  2π]  and  then  a  plot  over  3  periods.  Afterwards  the  Fourier

expansion.

Mathematica  offers  an  implemented  procedure  for  that,  but  uses  as  standard  2π-periodic

functions,  defined  in  the  interval  [-  π ,  π].  Thus,  we  define  the  sawtooth  as  function  in  that

interval  or use the above  defined  functions  fourcoeffc and fourserc. 

The  command  FourierTrigSeries  gives  the  partial  sum  of  the  Fourier  expansion  with  a num-

ber of upper  harmonics.

The  Gibbs  Phenomenon  at  the  discontinuity  points  is  clearly  recognizable  in  the  plot

below.  The overshoot  near  the discontinuity  is about  9% of the jump  height  (see [1],  3.2).  

In[  ]:= sawtooth [t_] = (Pi - t) / 2 (UnitStep [t] - UnitStep [t - 2 Pi])

p1 = Plot[Sum[sawtooth [t - k 2 Pi], {k, -4 , 2 }], {t, - 4 Pi, 2 Pi},

PlotStyle → Directive [RGBColor [0.127 , 0.121, 0.36], Thickness [0.01]],

PlotLabels → Style["sawtooth ", 14]];

f[t_] := sawtooth [t + 2 Pi] + sawtooth [t];

FSsawtooth [t_] = FourierTrigSeries [f[t], t, 7]

p2 := Plot[FSsawtooth [t], {t, -4 Pi, 2 Pi},

PlotStyle → Directive [Blue, Thickness [0.008 ]], PlotRange → All,

PlotLabels → Style["Gibbs Phenomenon ", 14], ImageSize → Medium ];

p2a = Show [p1, p2, ImageSize → Medium ];

Show [p2a]

Out[  ]=

1

2
(π- t) (UnitStep [t] - UnitStep [-2 π+ t])

Out[  ]= Sin[t] +
1

2
Sin[2 t] +

1

3
Sin[3 t] +

1

4
Sin[4 t] +

1

5
Sin[5 t] +

1

6
Sin[6 t] +

1

7
Sin[7 t]

sawtooth

Gibbs Phenomenon

-10 -5 5

-1.5

-1.0

-0.5

0.5

1.0

1.5

Now  its  Fourier  expansion.  Mathematica  offers  an implemented  procedure  for  that,  but  uses

as standard  periodic  functions  defined  in a  symmetric  interval  around  zero.

Thus,  we  define  the  sawtooth  as  function  in  the  interval  [-  π ,  π]  or  use  the  above  defined

functions  fourcoeffc and  fourserc.  The  command  FourierTrigSeries  gives  the  partial  sum  of

the Fourier  expansion  with a number  of upper  harmonics.

The Gibbs  Phenomenon  at the discontinuity  points  is clearly  recognizable  in the plot.

Chapter1  Basics on Fourier Series 5



The same  with the above  defined  functions  integrating  from  -2π  to 0. 

In[  ]:= fourcoeffc [f , -2 Pi, 0, 5]

b[5, -2 Pi, 0]

h[t_] = fourpolynomial [f , -2 Pi, 0, 7]

Out[  ]= -
ⅈ

10

Out[  ]=

1

5

Out[  ]= (1 + Cos[t]) Sin[t] +
1

3
Sin[3 t] +

1

4
Sin[4 t] +

1

5
Sin[5 t] +

1

6
Sin[6 t] +

1

7
Sin[7 t]

Convolution  is the key to understanding  Fourier  expansions:

Fourier  series  are  obtained  by  convolutions  of  a  function  f  with  Dirichlet  kernels,  later  with

Fejér  kernels  and other  summation  kernels.  

In  the  last  example,  you  obtain  the  same  partial  sum  by  the  2π-periodic  convolution  of  the

sawtooth  with the 2π-periodic  Dirichlet  kernel  of degree  7 :

In[  ]:= convolution [t_] =

FullSimplify [1 / (2 Pi) Integrate [sawtooth [s] *Dir[t - s, 7], {s, 0, 2 Pi}]]

Out[  ]= (1 + Cos[t]) Sin[t] +
1

3
Sin[3 t] +

1

4
Sin[4 t] +

1

5
Sin[5 t] +

1

6
Sin[6 t] +

1

7
Sin[7 t]

Since  Cos[t]  Sin[t]  = Sin[2  t]/2  , we see  that  this  convolution  is again  the  above  partial  sum  of

the sawtooth.

3. Fejér  kernels,  Smoothing,  and  Vanishing  of the  Gibbs  Phenomenon

The  Fejér  kernels  are  the  arithmetic  means  of  the  Dirichlet  kernels.  We  define  the  2π-peri-

odic Fejér  kernel  Fej[t,N] of degree  N-1 ⩾1 and plot  it for degree  9. 

Example  3. The graphics  shows  a Dirichlet  kernel  of degree  6 and a Fejér  kernel  of degree  9. 

In[  ]:= Fej[t_, N_] = 1 /N × (1 + Sum[Dir[t, k], {k, 1, N - 1}])

g3 = Plot[Fej[t, 10], {t, -2 Pi, 2 Pi}, PlotStyle → Directive [

Red, Thickness [0.01]], PlotRange → All, PlotLabels → Style["Fej[t,10]", 14]];

Out[  ]=

1 +
1

2
-Csc t

2
2

Sin 1

2
(-π+ 2 t)+ Csc t

2
2

Sin 1

2
(-π+ 2 N t)

N
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In[  ]:= plot3a = Show [g2, g3]

Out[  ]=

Dir[t,6]

Fej[t,10]

-6 -4 -2 2 4 6

5

10

The  Fejér  kernels  also  have  mean  values  one,  but  unlike  the  Dirichlet  kernels  are  non-nega -

tive.  In  contrast  to  the  Dirichlet  kernels,  they  converge  for  growing  N  uniformly  to  zero  in

every  closed  interval  that  does  not  contain  any  points  of  the  form  2kπ .  The  trigonometric

polynomial  with  degree  N  for  the  Fejér  kernel  Fej[t,N+1]  has  N  zeros  per  period.  Here  the

mean  value  of such  a kernel:

In[  ]:= Integrate [Fej[t, 5], {t, 0, 2 Pi}] / (2 Pi)

Out[  ]= 1

Since  there  are  continuous  periodic  functions  whose  Fourier  series  are  divergent  at infinitely

many  points,  it  was  an  important  result  of  L.  Fejér  in  1904  that  the  arithmetic  means  of  the

partial  sums  of  the  Fourier  series  of  a  continuous  periodic  function  f  converge  even  uni-

formly  towards  f. (For the proof  see [1], chapter  7.)

In  addition,  the  Gibbs  phenomenon  no  longer  occurs  when  approximating  functions  with

jump  points.  Due  to  the  lower  weighting  of  high-frequency  components  the  approximation

is smoothed  and  less  wavy.  The  price  for  this  is  a larger  error  in  the  quadratic  mean  in  com-

parison  with  an  approximation  using  a  partial  sum  of  the  Fourier  series  with  the  same

degree.

Equivalent  to  the  formation  of  such  arithmetic  means  is  the  periodic  convolution  with  Fejér

kernels.  We show  this using  the example  of a partial  sum of the sawtooth:

You can see that  there  is no Gibbs  phenomenon  with  the approximation  by Fejér  means.

Chapter1  Basics on Fourier Series 7



Example  4.  Blue  the sawtooth,  red  the approximation  with  the Fejér  averaging.  For compari -

son  at  the  right  the  plot  of  the  periodic  convolution  of  the  sawtooth  with  our  Fejér  kernel

Fej[t,11]  (The  calculation  takes  some  time,  i.e.,  some  patience  is  necessary.  This  calculation

is of course  too  complicated  from  a practical  point  of view  if,  as above,  the  resulting  trigono -

metric  polynomial  can be specified  directly.)

In[  ]:= f1[t_, N_] := Sum[(1 - k / (N + 1)) Sin[ k t] / k, {k, 1, N}]

g4 := Plot[f1[t, 10], {t, -2 Pi, 2 Pi}, PlotStyle → Directive [

Red, Thickness [0.01]], PlotRange → All, PlotLabels → Style["f1[t,10]", 14]]

g5 := Plot[sawtooth [t + 2 Pi] + sawtooth [t], {t, -2 Pi, 2 Pi},

PlotStyle → Directive [Blue, Thickness [0.008 ]],

PlotRange → All, PlotLabels → Style["sawtooth ", 14]]

g5a = Show [g4, g5];

f2[t_, N_] := NIntegrate [sawtooth [s] × Fej[t - s, N], {s, 0, 2 Pi}] / (2 Pi)

g6 = Plot[f2[t, 11], {t, -2 Pi, 2 Pi}, PlotStyle → Directive [

Red, Thickness [0.01]], PlotRange → All, PlotLabels → Style["f2[t,11]", 14]];

GraphicsRow [{g5a, g6}]

Out[  ]= f1[t,10]

sawtooth

-6 -4 -2 2 4 6

-1.5

-1.0

-0.5

0.5

1.0

1.5

f2[t,11]
-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

Let’s  check  the  differences  between  both  approximations.  The  deviations  are  due  to  the

numerical  integration  in the convolution  integral.

In[  ]:= Plot[Abs[f1[t, 4] - f2[t, 5]], {t, 0, 2 Pi}, PlotRange → All, ImageSize → Small ]

Out[  ]=

1 2 3 4 5 6

2. × 10-11

4. × 10-11

6. × 10-11

8. × 10-11

1. × 10-10

1.2 × 10-10

1.4 × 10-10
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1.2  Properties  of Fourier  Series

The  following  are  examples  of  how  the  Fourier  coefficients  change  (or  not),  when  a periodic

function  is shifted,  mirrored  or its amplitudes  are modulated.

Integration  Interval,  Time  Reversal

For  T-periodic  functions,  it  is  clear  that  the  integration  interval  for  calculating  the  Fourier

coefficients  can  be shifted  and  only  depends  on the  period  duration.  It is also  clear  that  even

periodic  functions  have  a  cos  series,  odd  ones  a  sine  series.  With  time  reversal  from  f(t)  to

the  function  f(-t),  the  Fourier  coefficients ck  are  transformed  to c-k  (substitution  rule  for

integrals)  and with complex  conjugation  of f to c-k .

Similarity

The  function  f(at)  similar  to  a  periodic  function  f(t),  a  >0,  has  the  same  Fourier  coefficients.

However,  their  frequency  assignment  changes.  As  an  example,  we  consider  the  sawtooth(t)

and  the  scaled  similar  function  f(t)=sawtooth(2t),  their  Fourier  series  expansions  up  to  a

certain  degree  and their  Fourier  coefficients.

Example  5.  We  see  the  same  Fourier  coefficients/amplitudes,  but  assigned  to  double  the

frequencies  compared  to the original  sawtooth.

To put it graphically:  The signal  f runs  twice  as fast,  but otherwise  looks  the same,  mathemati -

cally  "similar".

In[  ]:= FourierTrigSeries [f[2 t], t, 8]

PlotSin[2 t] +
1

2
Sin[4 t] +

1

3
Sin[6 t] +

1

4
Sin[8 t], {t, -13, 13},

PlotStyle → Directive [Blue, Thickness [0.008 ]],

PlotRange → All, ImageSize → Small , PlotLabels → Style["f[2t]", 14]

Out[  ]= Sin[2 t] +
1

2
Sin[4 t] +

1

3
Sin[6 t] +

1

4
Sin[8 t]

Out[  ]=

f[2t]

-10 -5 5 10 15

-1.5

-1.0

-0.5

0.5

1.0

1.5
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Translations  of a Signal

A "time  shift"  of a T-periodic  signal  does  not  change  its amplitudes,  but  its phases.  For  f(t+t0)

each Fourier  coefficient  is multiplied  by Exp(ⅈkω0t0) for the phase  shift  (ω0= 2 π / T ).

Example  6.  To  illustrate  this,  we  shift  the  2π-periodic  sawtooth  by  t0  =  π  and  look  at  the

Fourier  coefficients:  They  are  then  each  multiplied  by  (-1)k  in  comparison  with  the

unshifted  function,  resulting  in an alternating  series.

In[  ]:= ftransl [t_] = sawtooth [t + Pi]

g7 = Plot- 1

2
t (-UnitStep [-π+ t] + UnitStep [π+ t]), {t, -Pi, Pi},

PlotStyle → Directive [Blue, Thickness [0.01]],

PlotRange → All, PlotLabels → Style["shifted sawtooth ", 14];
trigpol5 [t_] = FourierTrigSeries [ftransl [t], t, 5]

g8 = Plot[trigpol5 [t], {t, -2 Pi, 2 Pi},

PlotStyle → Directive [Blue, Thickness [0.01]],

PlotRange → All, PlotLabels → Style["shifted approximation ", 14]];

Show [

g7,

g8]

Out[  ]= -
1

2
t (-UnitStep [-π+ t] + UnitStep [π+ t])

Out[  ]= -Sin[t] +
1

2
Sin[2 t] -

1

3
Sin[3 t] +

1

4
Sin[4 t] -

1

5
Sin[5 t]

Out[  ]=

shifted sawtooth

shifted approximation
-6 -4 -2 2 4 6

-1.5

-1.0

-0.5

0.5

1.0

1.5
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Amplitude  Modulation,  Translation  of the Spectrum

Amplitude  modulation  causes  a translation  of the spectrum.

This  is  one  of  the  most  important  properties ,  because  in  modern  communication  systems

like  mobile  telephony,  digital  broadcasting  or  WLAN  the  information  is  transmitted  in  the

complex  amplitudes  of  trigonometric  polynomials  in  high  frequency  bands.  Amplitude

modulation  is  therefore  a  method  of  transferring  a  signal  with  a  limited  bandwidth  to  a

desired  frequency  band  for  transmission  and  returning  it  to  the  original  frequency  band  for

reception.  Sidebands  are  suppressed  in  each  case  (once  the  left  suppressed,  once  the  right).

Thus,  by this method  considerable  power  losses  have  to be accepted.

Example  7.  We multiply  the trigonometric  polynomial  generated  last  with  Cos[5t].  The  result

is  a  spectral  shift  to  the  left  and  to  the  right,  i.e.  two  sidebands  and  a  halving  of  the  spectral

values.  Everyone  is  probably  familiar  with  an  application  example  on  radio  receivers  with

transmissions  that  can  be  received  via  AM  (amplitude  modulation).  The  amplitude  modula -

tion ampmod[t] is shown  in the subsequent  plot:

In[  ]:= ampmod [t_] := trigpol5 [t] Cos[5 t];

plota := Plot[{trigpol5 [t]}, {t, -2 Pi, 2 Pi},

PlotStyle → Directive [{Blue}, Thickness [0.01]], PlotRange → All,

ImageSize → Medium , PlotLabels → Style[trigpol5 , 14]];

plotb := Plot[{- trigpol5 [t]}, {t, -2 Pi, 2 Pi},

PlotStyle → Directive [{Black }, Thickness [0.007 ]],

PlotRange → All, ImageSize → Medium ];

plotc := Plot[ampmod [t], {t, -2 Pi, 2 Pi},

PlotStyle → Directive [{Red}, Thickness [0.008 ]], PlotRange → All,

ImageSize → Medium , PlotLabels → Style["ampmod [t], red", 14]];

Show [plota , plotb , plotc]

trigpol5

ampmod[t], red

-6 -4 -2 2 4 6

-1.5

-1.0

-0.5

0.5

1.0

1.5

Here the shifted  spectrum  and the corresponding  trigonometric  polynomial:
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In[  ]:= FourierCoefficient [ampmod [t], t, k]

FourierTrigSeries [ampmod [t], t, 10]

Out[  ]=

-
ⅈ

20
k ⩵ -10

ⅈ
20

k ⩵ 10

-
ⅈ

16
k ⩵ -1 || k ⩵ 9

ⅈ
16

k ⩵ -9 || k ⩵ 1

-
ⅈ

12
k ⩵ -8 || k ⩵ 2

ⅈ
12

k ⩵ -2 || k ⩵ 8

-
ⅈ
8

k ⩵ -3 || k ⩵ 7

ⅈ
8

k ⩵ -7 || k ⩵ 3

-
ⅈ
4

k ⩵ -6 || k ⩵ 4

ⅈ
4

k ⩵ -4 || k ⩵ 6

0 True

Out[  ]= -
Sin[t]

8
+

1

6
Sin[2 t] -

1

4
Sin[3 t] +

1

2
Sin[4 t] -

1

2
Sin[6 t] +

1

4
Sin[7 t] -

1

6
Sin[8 t] +

1

8
Sin[9 t] -

1

10
Sin[10 t]

To  illustrate  this,  we  will  use  only  the  “upper  sideband  signal”  in  the  frequency  band  from  6

to  10  rad/s,  subject  it  to  renewed  amplitude  modulation  with  Cos[5  t],  filter  out  (by  hand)

the  lower  sideband  up  to  5  rad/s  in  the  result  and  plot  the  result.  You  can  see  the  shape  of

the function  trigpol5[t]  again,  but now with considerably  reduced  amplitudes.
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In[  ]:= uppersidebandsignal [t_] :=

-
1

2
Sin[6 t] +

1

4
Sin[7 t] -

1

6
Sin[8 t] +

1

8
Sin[9 t] -

1

10
Sin[10 t];

pup = Plot[uppersidebandsignal [t], {t, -2 Pi, 2 Pi},

PlotStyle → Directive [Blue, Thickness [0.006 ]],

PlotRange → All, PlotLabel → Style["upper sideband signal ", 12]];

TrigReduce [Cos[5 t] uppersidebandsignal [t]]

lowersidebandsignal [t_] =

1

240
× (-60 Sin[t] + 30 Sin[2 t] - 20 Sin[3 t] + 15 Sin[4 t] - 12 Sin[5 t]);

plow = Plot[lowersidebandsignal [t], {t, -2 Pi, 2 Pi},

PlotStyle → Directive [Blue, Thickness [0.008 ]], PlotRange → All,

PlotLabel → Style["lower sideband signal after second modulation ", 12]];

Show [pup]

Show [plow ]

Out[  ]=

1

240
× (-60 Sin[t] + 30 Sin[2 t] - 20 Sin[3 t] + 15 Sin[4 t] - 12 Sin[5 t] -

60 Sin[11 t] + 30 Sin[12 t] - 20 Sin[13 t] + 15 Sin[14 t] - 12 Sin[15 t])

Out[  ]=

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

upper sideband signal

Out[  ]=

-6 -4 -2 2 4 6

-0.4

-0.2

0.2

0.4

lower sideband signal after second modulation

The  result  right  is  again  the  signal  trigpol5[t],  but  with  amplitudes  decreased  by  a  factor  of

1/4.
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Smoothness  and Magnitude  of the Spectrum

The smoother  a periodic  function  is, the faster  the spectral  values  approach  zero for |k|⟶∞.

We consider  two examples.  

Example  8. The first  example  is the function  g(t)=(t^2),  2π-periodically  extended.  It is contin -

uous on ℝ, but not continuously  differentiable.

Its  spectrum  decreases  in  magnitude  like  1/|k|^2.  The  second  example  is  the  function

f(t)=t(π+t)  on [-π ,0] and  f(t)=t(π-t)  on [0,π]. Its  2π-periodic  extension  is continuously  differen -

tiable  with piecewise  continuous  second  derivative.

Its spectrum  decreases  for |k|⟶∞  like 1/|k|^3.

In[  ]:= g[t_] := t^ 2

FourierTrigSeries [g[t], t, 6]

Out[  ]=

π2

3
+ 4 -Cos[t] +

1

4
Cos[2 t] -

1

9
Cos[3 t] +

1

16
Cos[4 t] -

1

25
Cos[5 t] +

1

36
Cos[6 t]

In[  ]:= f[t_] := Piecewise [{{t (Pi + t), t ≤ 0}, {t (Pi - t), t ≥ 0}}]

FourierTrigSeries [f[t], t, 10]

Out[  ]=

8 Sin[t]

π +
8 Sin[3 t]

27 π +
8 Sin[5 t]

125 π +
8 Sin[7 t]

343 π +
8 Sin[9 t]

729 π
It  can  be  seen  below  that  f  has  a  continuously  differentiable  2π-periodic  extension,  which,

however,  only  has a piecewise  continuous  second  derivative.

In[  ]:= f '[t]

Plot[f '[t], {t, - Pi, Pi},

PlotStyle → Directive [Blue, Thickness [0.01]],

PlotRange → All, PlotLabels → Style["f'(t)", 14], ImageSize → Small ]

Out[  ]=

π+ 2 t t < 0

π t ⩵ 0

π- 2 t True

Out[  ]=

f'(t)

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

The correlations  between  (local)  differentiability  properties  on the one  hand  and  the (global)

decay  of  the  spectrum  on  the  other  hand  show  that,  for  example,  small  local  perturbations

with  loss  of  differentiability  properties  can  drastically  change  the  entire  spectrum  of  a  func-

tion.

In  the  practice  of  signal  processing  such  disturbances  are  often  unavoidable  and  inevitably

result  in  major  challenges  for  problems  in  which  estimates  of  the  spectra  of  the  signals  shall

be given  from  observed  function  data.  The mathematical  tools  are preferably  variants  of low-

pass  filters  for  the  so-called  “denoising”  before  the  spectral  estimation.  Conversely,  in  order

to  simulate  steep  signal  slopes  using  a  trigonometric  polynomial  requires  high-frequency

components  in the approximation,  i.e. in other  words,  a large  bandwidth.
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Uniform  Convergence  of  Fourier  Series  of  Continuous  Functions  on  a  Closed  Bounded

Interval

As  we  have  seen,  Fourier  series  of  functions  f  on  an  interval  [a,b]  exhibit  the  Gibbs  phe-

nomenon.  However,  if  you  are  interested  in  a  trigonometric  approximation  of  f  in  the  inter -

val [a,b]  and f is continuous,  you achieve  uniform  convergence  on the closed  interval  [a,b]  by

extending  the  function  to  a  continuous  2(b-a)-periodic  function  on  the  entire  real  axis.  You

then  get  on  [a,b]  uniform  convergent  trigonometric  approximations  by  periodic  convolu -

tions  of  f  with  the  Fejér  kernels.  If  f  is  continuous  and  additionally  piecewise  continuously

differentiable,  you  achieve  uniform  convergent  Fourier  series  approximations  by  2(b-a)-

periodic  convolutions  of  f  with  the  according  Dirichlet  kernels.  This  is  the  basic  fact  for  a

proof  of  the  Weierstrass  approximation  theorem ,  because  the  trigonometric  approxima -

tions  can again  be uniformly  approximated  by their  Taylor  polynomials.  

Example  9.  Consider  the function  f(t)=t  on [-1,2]  and its 6-periodic  continuous  extension.  

In[  ]:= f[t_] = t (HeavisideTheta [t + 1] - HeavisideTheta [t - 2]);

p1 = Plot[f[t], {t, -2, 4}, PlotLabel → "f(t)"];

fextended1 [t_] = f[t] + f[t - 3] + f[t - 6];

In[  ]:= p2 = Plot[fextended1 [t], {t, -1, 2},

PlotLabel → "Fourier Expansion of the 3-periodic

extension with Gibbs Phenomenon ", PlotRange → All, PlotStyle → Directive [

Blue, Thickness [0.008 ]]];

fser1[t_] = fourpolynomial [f , -1, 2, 6];

In[  ]:= p3 = Plot[fser1[t], {t, -1, 2}, PlotStyle → Directive [

Red, Thickness [0.008 ]]];

Show [p2, p3]

Out[  ]=

-1.0 -0.5 0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

1.5

2.0

Fourier Expansion of the 3-periodic

extension with Gibbs Phenomenon

In  the  red  curve  we  clearly  see  the  Gibbs  phenomenon,  which  prevents  uniform  conver -

gence  of the Fourier  expansions  in the interval  [-1, 2]. 
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Example  10.  Now,  we extend  the function  f to a 6 - periodic  continuous  and piecewise  contin -

uously  differentiable  function  on  the  entire  real  axis  and  build  the  Fourier  series  of  that

extension.  Then,  this  series  converges  uniformly  to  f  on  the  entire  closed  interval  [-1,  2]  (see

the red approximation  in the illustration  below).  

In[  ]:= fextended2 [t_] = f[t] - (f[t - 3] - 1) (HeavisideTheta [t - 2] - HeavisideTheta [t - 5]);

p4 = Plot[fextended2 [t], {t, -1, 5},

PlotLabel → "Fourier expansion in [-1,2] of the 6-periodic

continuous extension without Gibbs Phenomenon ",

PlotRange → All, PlotStyle → Directive [

Blue, Thickness [0.008 ]]];

fser2[t_] = fourpolynomial [fextended2 , -1, 5, 6]

Out[  ]=

75 π2 - 900 Cos π t

3
+ 200 Cos[π t] - 36 Cos 5 π t

3
- 36 3 -25 Sin π t

3
+ Sin 5 π t

3


150 π2

In[  ]:= p5 = Plot[fser2[t], {t, -1, 2},

PlotLabel → "Fourier expansion in [-1,2] of the 6-periodic

continuous extension without Gibbs Phenomenon ",

PlotRange → All, PlotStyle → Directive [

Red, Thickness [0.008 ]]];

Show [p4, p5]

Out[  ]=

-1 1 2 3 4 5

-1.0

-0.5

0.5

1.0

1.5

2.0

Fourier expansion in [-1,2] of the 6-periodic

continuous extension without Gibbs Phenomenon

Fourier  Series  of Derivatives  and Integrals

The  Fourier  coefficients  of  the  derivative  f  '  of  a  T-periodic  function  f  with  Fourier  coeffi -

cients  k  are  the  coefficients  ⅈω0  k  with  ω0  =2π/T. Of  course,  it  is  possible  that  the  resulting

series  no  longer  converges  at  any  point,  as  the  example  of  the  sawtooth  series  immediately

shows.

If the derivative  f' is piecewise  continuous  and  its Fourier  series  converges  at a point  t0 , then

its limit  is 

f '(t0 +) + f 't0 -))/2  by the theorem  of Fejér  with  right  and left sided  limits.

Much  simpler  is the integration  of Fourier  series  f: They  can be integrated  term  by term.

As integral  function  ∫0

t
f (x) ⅆx  we obtain  a periodic  function  oscillating  on the ramp  0 t + F0 ,

where  0 is the mean  value  of f and F0 the mean  value  of the function  ∫0

t
(f (x) - c0) ⅆx. 
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Example  11.  We  consider  as  an  example  a  partial  sum  of  the  sawtooth,  shifted  upwards  by

1/2: You see the trigonometric  polynomial,  afterwards  its integral  function,  and both  plotted

In[  ]:= f[t_] = 1 / 2 + Sum[Sin[k t] / k, {k, 1, 4}]

p1 = Plot[f[t], {t, - 2 Pi, 2 Pi},

PlotStyle → Directive [Blue, Thickness [0.008 ]],

PlotRange → All, PlotLabels → Style["f(t)", 14]];

intf [t_] = TrigReduce [Integrate [f[x], {x, 0, t}]]

Out[  ]=

1

2
+ Sin[t] +

1

2
Sin[2 t] +

1

3
Sin[3 t] +

1

4
Sin[4 t]

Out[  ]=

1

144
× (205 + 72 t - 144 Cos[t] - 36 Cos[2 t] - 16 Cos[3 t] - 9 Cos[4 t])

In[  ]:= p2 = Plot[intf [t], {t, -4 Pi, 16 Pi}, PlotStyle → Directive [Blue, Thickness [0.008 ]],

PlotRange → All, PlotLabels → Style["intf [t]", 14]];

Show [p1]

Show [p2]

Out[  ]= f(t)

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

1.5

2.0

Out[  ]=

intf[t]

-10 10 20 30 40 50

-5

5

10

15

20

25

The  result  is  a  periodic  function  oscillating  on  the  ramp  c0  t  +  F0,  c0  and  F0  as  above.  The

function  is zero at the origin.

The complete  Fourier  series  of the sawtooth  has a spectral  decay  like  1/k (the  sawtooth  is not

continuous),  the  integral  function  has  a  spectrum,  which  decays  like  1/k2  for  increasing  |k|

(it is continuous,  but is not continuously  differentiable).

Check  F0

In[  ]:= F0 = Integrate [Integrate [f[x] - 1 / 2, {x, 0, t}], {t, 0, 2 Pi}] / (2 Pi)

Out[  ]=

205

144
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We  come  to  the  important  aspect  that  Fourier  expansions  of  T-periodic  functions  f  can  be

seen  as orthogonal  projections  of  f into  finite-dimensional  subspaces  of  the  space  L2([0,  T ]),

the space  of square  integrable  functions  g: [0,T]⟶ℂ.

A  partial  sum  of  degree  ⩽N  of  the  Fourier  series  of  a  T-periodic  square  integrable  function  f

is  the  best  approximation  for  f  in  the  finite-dimensional  subspace  of  L2([0,  T  ]),  which  is

generated  by  the  trigonometric  functions  1,  Cos[2πkt/T]  and  Sin[2πkt/T],  k=1,...,N.  It  mini -

mizes  the  norm  of  the  error  (and  thus  the  power  losses  in the  approximation).  It  is  therefore

the  orthogonal  projection  of  the  function  f  into  the  subspace  generated  by  trigonometric

functions  according  to the degree  of f.

The  inner  product  to  "measure"  orthogonality  is  the  one  usually  considered  in  L2([0,  T  ]).

This  optimization  with  respect  to  the  error  in  the  quadratic  mean  (resp.  in  the  RMS  mean,

Root  Mean  Square)  is one  of the  main  reasons  for  the  use  of Fourier  expansions  in engineer -

ing,  where  good  pointwise  approximations  are  often  less  important  than  mean  values  as

defined  by  the  concept  of  power.  The  series  of  magnitude  squares  of  the  (complex)  Fourier

coefficients  converges  to the  total  power  of the  "signal"  f. This  is the  meaning  of the  Parseval

equation.

As  an  example  again  the  sawtooth:  First  the  series  of  the  squared  absolute  values  of  the

complex  Fourier  coefficients,  afterwards  the  power  calculated  as  mean  square  of  the  func-

tion.  Their  difference  is zero,  i.e.,  they are equal.

Sum[1 / (2 k ^ 2), {k, 1, Infinity }] - Integrate [(Pi - t)^ 2 / 4, {t, 0, 2 Pi}] / (2 Pi)

Out[  ]= 0

Sum[1 / (2 k ^ 2), {k, 1, Infinity }]

Out[  ]=

π2

12
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1.3  Orthogonal  Projections  into  Finite-Dimensional  Subspaces  of L2([a,  b])

Fourier  series  expansions  of functions  in L2([0, T ]) with  the orthogonal  system  of the 

trigonometric  functions  1, Cos[2πkt/T],Sin[2πkt/T],  k=1,...,N,  are only  a first  example  of the 

general  concept  of calculating  with functions  in a space L2([0, T ]) as function  series  with  the 

help of a complete  orthogonal  system.  

This corresponds  to representations  of vectors  in finite  dimensional  spaces  by different  

bases.  The partial  sums  of such  series  are then again  orthogonal  projections  into the finite-

dimensional  subspaces  of L2([0, T]) generated  by the participating  basis  functions,  and thus 

the best  approximations  to the function  in the respective  subspaces  in the sense  of the

L2([0, T ]) norm.  

There  are many  such  orthogonal  systems  of functions  in L2([0, T ]), analogously  in L2([a, b]),  

which  are used  in mathematics  and technology.  We consider  here  only  one example,  others  

in subsequent  chapters.  As an example,  consider  the task of approximating  the function  

f[t]=Sin[3t]  in the interval  [-1,1]  by a polynomial.  Polynomials  are often  preferred  

approximation  functions  for many  reasons.  They  allow  for particularly  simple  processing  

such as differentiating,  integrating,  calculating  values.  

As the first  method  of approximation,  you usually  learn  Taylor  expansion  in the first  

semester.  You also learn  that a Taylor  polynomial  provides  the exact  function  value  at the 

development  point,  but the error  often  increases  with the distance  from  the development  

point.

A polynomial  approximation  in mean  square  has the property  that the approximating  

function  oscillates  around  the given  function,  but remains  near  to it on the entire  interval.  

We compare  two approximations  of a sine function,  at first  with  the Taylor  polynomial  of 

degree  5 with expansion  at zero,  secondly  an approximation  in mean  square  with the 

orthogonal  system  of the Legendre  polynomials  in the real  vector  space  L2([- 1, 1]). 

As inner  product  we choose  <f,g>=  ∫-1

1
f (x) g (x) ⅆx  .

Example  12.  Plot  of the Taylor  polynomial  n1[t]  of degree  5 for the sine and a plot of the sine 

function:

In[  ]:= n1[x_] = Normal [Series [Sin[3 x], {x, 0, 5}]]

p1 := Plot[Sin[3 x], {x, -1, 1}, PlotStyle → Directive [Blue, Thickness [0.008 ]],

PlotRange → All, PlotLabels → Style["Sin[3x]", 14]]

p2 := Plot[n1[x], {x, -1, 1}, PlotStyle → Directive [Red, Thickness [0.008 ]],

PlotRange → All, PlotLabels → Style["Taylor polynomial ", 14]]

Show [p1, p2, ImageSize → Medium ]

Out[  ]= 3 x -
9 x3

2
+

81 x5

40
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Sin[3x]

Taylor polynomial

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

You see the typically  increasing  error  with  the distance  from  zero.

Now the approximation  with the orthogonal  system  of the Legendre  polynomials.  

Mathematica  knows  these  polynomials  as LegendreP.  In normed  form  they are defined  by

In[  ]:= LPol[k_, x_] = 1 / (2 ^ k k !) D[(x ^ 2 - 1)^ k, {x, k}] / Sqrt[2 / (2 k + 1)]

Out[  ]=

2-
1

2
-k

y. [2 + n. ] [k]

1

1+2 k

As  an  example  the  normed  Legendre  polynomial  of  degree  3  and  its  L2([-  1,  1])  norm  with

the inner  product  from  above:

In[  ]:= Expand [LPol[3, x]]

Integrate [LPol[3, x]^ 2, {x, -1, 1}]

Out[  ]= -
3

2

7

2
x +

5

2

7

2
x
3

Out[  ]= 1

The  Legendre  polynomials  in  Mathematica  implemented  as  LegendreP[k,x]  are  differently

normed.

For comparison  LegendreP[3,x]  in Mathematica  and its norm  with our inner  product.

In[  ]:= Expand [LegendreP [3, x]]

Sqrt[Integrate [LegendreP [3, x]^ 2, {x, -1, 1}]]

Out[  ]= -
3 x

2
+
5 x3

2

Out[  ]=

2

7

Plot  of  the  first  5  Legendre  polynomials  normed  as  above.  Observe  the  symmetry  properties

and the numbers  of zeros  of them  in [-1,1].  In the image  they are labeled  as P0 to P4:
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In[  ]:= Plot[Evaluate [Table [LegendreP [n, x] / Sqrt[2 / (2 n + 1)], {n, 0, 4}]], {x, -1, 1},

PlotStyle → Directive [Hue, Thickness [0.007 ]],

PlotRange → All, PlotLabels → {"P0", "P1", "P2", "P3", "P4"}]

Out[  ]=

P0

P1

P2

P3

P4

-1.0 -0.5 0.5 1.0

-2

-1

1

2

Example  13.  Now  to  the  approximation  of  Sin[3x]  in  mean  square  (often  also  called  in  root

mean  square  RMS,  if the root  is taken)  with the Legendre  polynomials  up to degree  5:

In[  ]:= Faktor [n_] := NIntegrate [LPol[n, x] Sin[3 x], {x, -1, 1}]

n2[x_] = Expand [Sum[Faktor [n] × LPol[n, x], {n, 0, 5}]]

(*/(2/(2 n +1)),{n,0,5}]], if you use LegendreP instead of LPol *)

0. + 2.97177 x - 4.23916 x
3
+ 1.42043 x

5

See  the  approximating  polynomial,  as  above  plotted  with  an  offset  of  +0.1 ,  so  that  one  can

distinguish  it at all from  the sine function.  

Thus,  we see that  it is a better  approximation  over  the whole  interval  than  the Taylor  polyno -

mials.  Finally,  we look at the absolute  errors  for the Taylor  polynomial  and for the approxima -

tion with the Legendre  polynomials.

In[  ]:= p3 := Plot[n2[x] + 0.1, {x, -1, 1},

PlotStyle → Directive [Red, Thickness [0.005 ]], PlotRange → All,

PlotLabels → Style["Legendre approximation + 0.1", 14]]

(* shown with offset +0.04 for visibility *)

Show [p1, p3]

Out[  ]= Sin[3x]

Legendre approximation + 0.1

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

The approximation  errors  of the Taylor  polynomial  compared  to the Legendre  polynomial:
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In[  ]:= p4 := Plot[Abs[Sin[3 x] - n1[x]], {x, -1, 1},

PlotStyle → Directive [Blue, Thickness [0.008 ]],

PlotRange → All, PlotLabels → Style["Error Taylor Polynomial ", 14]]

p5 := Plot[Abs[Sin[3 x] - n2[x]], {x, -1, 1},

PlotStyle → Directive [Red, Thickness [0.01]], PlotRange → All,

PlotLabels → Style["Error Legendre Polynomial ", 14]]

Show [p4, p5, ImageSize → Medium ]

Out[  ]=

Error Taylor Polynomial

Error Legendre Polynomial
-1.0 -0.5 0.5 1.0

0.1

0.2

0.3

0.4

You  realize  that  the  concept  of  expanding  a  function  according  to  an  orthogonal  system  in

spaces  with  an  inner  product  can  be  a powerful  tool,  if  you  want  or  need  to  replace  compli -

cated  functions  by  approximations  with  easier  to  handle  functions.  It  should  be  pointed  out

that  also  when  using  orthogonal  systems  other  than  the  trigonometric  functions  as  in classi -

cal  Fourier  analysis  for  functions  with  jump  points  the  Gibbs  phenomenon  often  occurs

again.  To  combat  this,  you  can  also  use  convolutions  with  suitable  kernels,  as  we  have  seen

above  with the Fejér  kernels  for Fourier  series.
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Approximation  by Legendre  polynomials

We  see  the  Gibbs  phenomenon  and  we  also  see  increasing  errors  at  the  edges  of  the  interval

[-1,1].  The  behavior  at  the  edges  can  be  influenced  by  introducing  weight  functions  to  the

inner  product.  We  will  demonstrate  this  in  examples  of  approximation  and  interpolation

using  Chebyshev  polynomials  in  a  subsequent  section  related  to  the  discrete  Fourier  and

discrete  cosine  transform  (DFT  and DCT).

Example  14.  As an example,  we take the sign function  in the interval  [-1,1]  and use for approx

imation  the  Legendre  polynomials  as  before,  this  time  up  to  degree  25.  The  attempt  to

achieve  a good  approximation  with  a Taylor  polynomial  over  the  entire  interval  would  be an

unsuitable  attempt  a  priori  because  of  the  jump  point.  For  reasons  of  symmetry,  we  only

have to consider  the odd polynomials.

In[  ]:= f[x_] = 2 UnitStep [x] - 1;

p6 = Plot[f[x], {x, -0.7, 0.7},

PlotStyle → Directive [Blue, Thickness [0.007 ]],

PlotRange → All, PlotLabel → Style["Gibbs Phenomenon ", 14]];

factor2 [n_] = Integrate [LegendreP [n, x] f[x], {x, -1, 1}];

n3[x_] = Sum[factor2 [n] LegendreP [n, x] / (2 / (2 n + 1)), {n, 1, 25, 2}];

p7 = Plot[n3[x], {x, -0.7, 0.7},

PlotStyle → Directive [Red, Thickness [0.008 ]],

PlotRange → All, PlotLabel → Style["Gibbs Phenomenon ", 14]];

p7a = Show [p6, p7];

Show [p7a]

Out[  ]=

-0.6 -0.4 -0.2 0.2 0.4 0.6

-1.0

-0.5

0.5

1.0

Gibbs Phenomenon

A Fourier  Series  of a periodic  function,  which  is not piecewise  continuously  differentiable

Since  in my book  - as in other  introductory  textbooks  - mainly  Fourier  series  representations

of  piecewise  continuously  differentiable  periodic  functions  are  treated  for  assertions  on

pointwise  convergence,  an example  of  a Fourier  series  for  a periodic  function  is shown  here,

which  does  not fulfill  this requirement.

In[  ]:= f[t_] := Log[Abs[2 Sin[t / 2]]] (UnitStep [t] - UnitStep [t - 2 Pi])

Below  is  the  plot  of  the  2π  periodic  extension  in  the  interval  [-2π ,  2π].  Since  there  are  no

limits  for  t⟶0  or  t⟶2  ,  the  function  is  not  piecewise  continuously  differentiable,  but  can

be integrated  to [0,2  ]. It has a Fourier  series  representation  for t≠2k  , k in Z.

We  let  Mathematica  calculate  a partial  sum  of  this  Fourier  series.  Although  the  series  is  very

similar  to  the  the  sawtooth  series  (there  sin(kt)  in  the  summands  of  the  partial  sums,  here  it

is  -cos(kt)  instead),  the  function  shown  is  completely  different  from  the  sawtooth.  You  can

also  see  in  the  subsequent  example  that  there  are  notable  differences  between  sine  series

and cosine  series.
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Example  15. 

In[  ]:= Plot[f[t + 2 Pi] + f[t], {t, -2 Pi, 2 Pi},

PlotStyle → Directive [Blue, Thickness [0.007 ]],

ImageSize → Small , PlotLabels → Style["f[t]", 14]]

Out[  ]=

f[t]

-6 -4 -2 2 4 6

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

In[  ]:= FourierTrigSeries [f[t + 2 Pi] + f[t], t, 6]

Out[  ]= -Cos[t] -
1

2
Cos[2 t] -

1

3
Cos[3 t] -

1

4
Cos[4 t] -

1

5
Cos[5 t] -

1

6
Cos[6 t]

1.4  Example  of Convergent  Trigonometric  Series,

which  are  not  Classical  Fourier  Series

In the first  example,  a series  is shown  that is not a classical  Fourier  series.

In the  second  example  below,  we  look  at  one  of  the  first  periodic  functions  you  can  think  of,

namely  the  tangent  function.  It  is  unbounded,  thus  not  piecewise  continuously  differen -

tiable.  It does  not  have  a classical  Fourier  series  representation.  It is possible  only  with  distri -

bution  theory  that  the  tangent  can  be  understood  as  a  periodic  distribution  with  a so-called

generalized  Fourier  series  representation  (see [1] and a later  booklet  on distributions).

Not a classical  Fourier  series

The example  is a sine series  converging  everywhere,  but it is not a classical  Fourier  series.

In[  ]:= f[t_] = Sum[Sin[k t] / Log[k], {k, 2, Infinity }]

Out[  ]= 
k=2

∞ Sin k t
Log k

A similar  cosine  series  is a classical  Fourier  series

In[  ]:= Sum[Cos[k t] / Log[k], {k, 2, Infinity }]

Out[  ]= 
k=2

∞ Cos k t
Log k
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Mathematica  returns  the  definition  and  cannot  determine  an explicit  simpler  representation

of the  associated  function.  You  can  show  that  the  sine  series  converges  everywhere,  in  every

interval  [h,2π-h],  h>0,  even  uniformly  to a continuous  function.  The  function  f[t]  cannot  be a

classical  Fourier  series  of  a  function  integrable  on  [0,  2π],  since  the  series  ∑k=2
∞ 1 / (k Log[k])

diverges.  For  the  sine  coefficients  bk  of  the  Fourier  series  of  an integrable  function,  however,

the  series   ∑k=1
∞ bk/k  must  be  convergent.  For  a  cosine  series,  a  corresponding  coefficient

condition  does  not  apply.  For  example,  the  series   ∑k=2
∞ cos (kt) / Log (k) is in  fact  a classical

Fourier  series  (to be found  in [11] A. Zygmund,  Trigonometric  Series,  chapter  V, section  1).

These  examples  alone  show  subtle  mathematical  facts  as  soon  as  one  is  interested  in  point -

wise  representations  of  periodic  functions  by  Fourier  series.  The  difficulties  are  caused  in

particular  by the integral  definition  used,  because  Fourier  coefficients  are to be calculated  by

integration.  They  were  already  the  reason  for  the  development  of  set  theory  by  G.  Cantor,

the development  of the integral  concepts  of B. Riemann  and  later  of H. Lebesgue,  for numer -

ous  works  of  great  mathematicians  such  as  G.  H.  Hardy,  A.  Zygmund  and  many  others,  as

well  as  for  the  development  of  the  modern  concept  of  functions  by  A.L.  Cauchy,  P.L.  Dirich -

let  and  the  entire  mathematical  development  in  analysis  since  about  the  middle  of  the  19th

century.

Now  to  the  tangent  function.  It  does  not  have  a  classical  Fourier  series  representation.

Mathematica  does  not return  a result  for the Fourier  series  expansion.

We  will  deal  with  the  representation  of  the  tangent  function  as  a  periodic  distribution  in

another  booklet  on “Distributions  and Application  Examples  with Mathematica”.

In[  ]:= FourierTrigSeries [Tan[t], t, 5]

Out[  ]= FourierTrigSeries [Tan[t], t, 5]

1.5  Graphical  Illustrations  of Trigonometric  Polynomials

Graphical  representation  of a trigonometric  polynomial  as a circular  wave

Clear ["Global` *"]

In[  ]:= ω0 = Pi / 2; T = 2 Pi /ω0;

P[t_] = I / 2 Sin[ω0 t] + I Sin[2 ω0 t] - Cos[3 ω0 t]

Table [{t, Re[P[t]], Im[P[t]]}, {t, 0, 6, 0.015 }];

Out[  ]= -Cos 3 π t

2
+ 1

2
ⅈ Sin π t

2
+ ⅈ Sin[π t]
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In[  ]:= Show [(*circularly wave*)

Normal [ParametricPlot3D [{t, Re[P[t]], Im[P[t]]}, {t, 0, 6}, Mesh → 50,

MeshStyle → Directive [Thin, Blue],

PlotStyle → Directive [Darker [Red], Thickness [0.006 ], Arrowheads [.02]]]] /.

Point [{x_, y_, z_}] ⧴ If[Chop [Norm [{y, z}]] < 0.1, Point [{x, 0, 0}],

Arrow [{{x, 0, 0}, {x, y, z}}]], (*axes*)

Graphics3D [{{Purple , {Arrowheads [.025], Arrow [{{0, 0, 0}, {7, 0, 0}}]},

{Arrowheads [.025 {-1, 1}], Arrow [{{0, 1.5, 0}, {0, -1.5, 0}}],

Arrow [{{0, 0, 1.5}, {0, 0, -1.5}}]}}}],

Axes → True, AxesLabel → {"Time t", " Re(P(t))", "Im (P(t))"},

LabelStyle → Directive [Black , FontSize → 11], Boxed → False ,

BoxRatios → {7, 2, 2}, PlotRange → All, ViewPoint → {5, -5, 5}]

Out[  ]=

Representation  of the same  example  as a curve  in the complex  plane  over  one period.

The curve  starts  at (-1,0)  and changes  color  and line dashing  with increasing  t all T/4.

In[  ]:= plot1a = ParametricPlot [{Re[P[t]], Im[P[t]]},

{t, 0, T / 4}, PlotStyle → {Black }, PlotRange → All];

plot1b = ParametricPlot [{Re[P[t]], Im[P[t]]}, {t, T / 4, T / 2},

PlotStyle → {Dashing [Tiny ]}, PlotRange → All];

In[  ]:= plot2a = ParametricPlot [{Re[P[t]], Im[P[t]]},

{t, T / 2, 3 T / 4}, PlotStyle → {Red}, PlotRange → All];

plot2b = ParametricPlot [{Re[P[t]], Im[P[t]]}, {t, 3 T / 4, T},

PlotStyle → {Dashing [Large ]}, PlotRange → All];

In[  ]:= Show [plot1a , plot1b , plot2a , plot2b , ImageSize → Medium ]
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Representation  of Real  Part  and Imaginary  Part  over  one period

In[  ]:= plot3 = Plot[Re[P[t]], {t, 0, T}, PlotStyle → Directive [Blue],

PlotRange → All, PlotLabels → Style["Re[P[t]]", 14]];

plot4 = Plot[Im[P[t]], {t, 0, T}, PlotStyle → Directive [Red],

PlotRange → All, PlotLabels → Style["Im[P[t]]", 14]];

Show [{plot3, plot4 }, ImageSize → Medium ]

Out[  ]=

Re[P[t]]

Im[P[t]]
1 2 3 4

-1.5

-1.0

-0.5

0.5

1.0

1.5
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Representation  by Magnitude  and Phase  over  one period

In[  ]:= plot5 = Plot[Abs[P[t]], {t, 0, T}, PlotStyle → Directive [Blue],

PlotRange → {0, 2}, PlotLabels → Style["Abs[P[t]]", 14]]

Out[  ]= Abs[P[t]]

0 1 2 3 4

0.5

1.0

1.5

2.0

In[  ]:= plot6 = Plot[Arg[P[t]], {t, 0, T}, PlotStyle → Directive [Red],

PlotRange → {-6 / 5 Pi, 6 / 5 Pi}, PlotLabels → Style["Arg[P[t]]", 14]]

Out[  ]=

Arg[P[t]]

1 2 3 4

-2

2

4

28 Fourier Analysis with Mathematica 1



2   Application  of Fourier  Series to Linear Differential  Equations

The  aim  of  the  chapter  is  to  show  some  application  examples  of  Fourier  series  with  the  help

of  Mathematica  for  the  solution  of  linear  differential  equations  with  constant  coefficients.

These  examples  demonstrate  the  benefits  of  Fourier  analysis  for  such  differential  equations.

In  a  later  booklet,  when  we  explain  distributions  and  Fourier  transforms  with  Mathematica,

we  will  also  treat  3D  heat  and  wave  equations,  further  approximation  tasks  and  signal  pro-

cessing  examples.  Here,  we will  look  at the  DFT,  DCT  and  Chebyshev  polynomials  and  some

of their  typical  properties  that are relevant  for applications  in the subsequent  chapter.    

        

2.1 Stable  Ordinary  Linear  Differential  Equations  with  Constant  Coefficients         

Asymptotically  stable  linear  ordinary  differential  equations  P(D)u=f  of  order  n with  constant

coefficients  have  characteristic  polynomials  P(z) = ∑k=0
n ak zk (D   stands  for  the  differential

operator  d/dt),  whose  zeros  all  have  negative  real  parts.  It  is  necessary  that  P  is  a  so-called

Hurwitz  polynomial,  i.e.,  that all coefficients  have  the same  sign.  

In  my  textbook,  cited  at  the  beginning,  it  is  shown  that  such  equations  with  a  continuous,

piecewise  continuously  differentiable  T-periodic  right-hand  side  f  have  a   uniquely  deter -

mined  T-periodic  solution  u,  which  can  be  obtained  by  the  T-periodic  convolution  of  f  with

the corresponding  T-periodic  transfer  function  h. 

The  Fourier  series  of  this  T-periodic  transfer  function  has  the  Fourier  coefficients

hk = 1 / P(ⅈω0 k), ⅈ2 = -1, ω0 = 2 π/T.  The  convolution  is  n-times  continuously  differentiable.

It  describes  the  long-term  behavior  of  the  solution  after  the  (rapid)  decay  of  the  transient

process  and usually  has a different  amplitude  and phase  spectrum  than the excitation  f. 

a)  A forced periodic oscillation of a mass on a spring                   

Example  1.  Let  a  mass  m  on  a  spring  be  excited  by  a  periodic  force  F.  The  damping  coeffi -

cient  is  k>0,  the  spring  constant  d>0.  The  describing  differential  equation  for  the  displace -

ment  y[t] is 

In[  ]:= dgl = m y ''[t] + k y '[t] + d y[t] ⩵ F[t]

Out[  ]= d y[t] + k y′[t] + m y′′[t] ⩵ F[t]

To  illustrate  this,  we  set  F (t ) = F0 Cos[ωt], F0 =0.2  N,  m=1  kg,  k=0.2  kg/s,  d=1/2  N /m,  ω=2π
rad/s.  The  equation  is  asymptotically  stable,  as  can  be  seen  immediately  from  the  zeros  of

the characteristic  polynomial:  It has conjugate  complex  zeros  with negative  real  parts.  

In[  ]:= m := 1; k := 0.2; d := 1 / 2; F0 := 0.2; ω := 2 π; F[t_] := F0 Cos[ω t] ;

P[z_] := m z ^ 2 + k z + d;

zeros = Solve [P[z] ⩵ 0, z]

Out[  ]= {{z → -0.1 - 0.7 ⅈ}, {z → -0.1 + 0.7 ⅈ}}
The  following  is  the  periodic  solution  obtained  by  setting  the  solution  of  the  homogeneous

differential  equation  is  set  to  zero,  here  by  setting  the  occurring  parameters  C[1],  C[2]  to



zero.   This  solution  has  the  same  frequency  as the  exciting  force  F with  the  oscillation  period

T=1s,  but  a  different  phase  and  a  different,  smaller  amplitude.  It  describes  the  resulting

oscillation  after  the transient  decays.  We first  solve  the equation  using  the existing  Mathemat -

ica algorithms.  

In[  ]:= solution = DSolve [dgl, y, t];

We  call  the  periodic  solution  f,  as  defined  by  the  Mathematica  result  and  graphically  shown

in a section  0⩽t⩽4.  Observe  the strong  damping  compared  to F(t).

In[  ]:= f := solution 〚1, 1, 2〛 /. {C[1] → 0, C[2] → 0}

Plot[f[t], {t, 0, 4}, PlotStyle → Directive [

Blue, Thickness [0.008 ]], PlotRange → All,

ImageSize → Small , PlotLegends → Style["f[t]", 12]]

Out[  ]=
1 2 3 4

-0.004

-0.002

0.002

0.004

f[t]

The  resulting  amplitude  and  phase  shift  are  simply  obtained  from  the  frequency  response.

In this  case,  the  Fourier  coefficients  of  the  excitation  F are  to be  multiplied  by  1/P  (±ⅈω).  We

first  generate  the  Fourier  coefficients  of  F  and  thus  once  again  the  solution,  which  can  be

obtained  by  periodically  convolving  F  with  the  corresponding  periodic  transfer  function,  i.

e.,   by  multiplying  the  associated  Fourier  coefficients.  As  always  in  time  -  invariant  linear

systems,  "no  new  frequencies"  are  generated.  We  state  the  solution  once  again  using  our

existing  knowledge  of Fourier  series  and this time call  the result  g:

In[  ]:= FourierCoefficient [F[t], t, n, FourierParameters → {1, 2 Pi}]

Out[  ]=  0.1 n ⩵ -1 || n ⩵ 1

0. True

Now the trigonometric  polynomial,  which  solves  the equation  and a plot

In[  ]:= g[t_] = FullSimplify [1 / (10 P[-ⅈ ω]) Exp[-ⅈ ω t] + 1 / (10 P[ⅈ ω]) Exp[ⅈ ω t]]

Out[  ]= -0.00512572 Cos[2 π t] + 0.00016525 Sin[2 π t]

Now the resulting  amplitude  and phase  shift,  calculated  from  the frequency  response  

1/P (ⅈ ω). The parameter  ω was the angular  frequency  of the excitation.   

In[  ]:= amp = N[2 Abs[FourierCoefficient [F[t], t, 1, FourierParameters → {1, 2 Pi}] / P[ⅈ ω]]]

Out[  ]= 0.00512838

In[  ]:= phase = N[Arg[1 / P[ⅈ ω]]]
Out[  ]= -3.10936

The  positive  resonant  circular  frequency  and  the  solution  amplitude  at  such  a  frequency

results  from  the  maximum  value  of  |1/P(ⅈω)|,  ω>0.  It  is  ωr = d /m - k2  2 m2 .  You  can

also search  with Mathematica  for this extreme  point  with  the FindMaximum  command.  
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Compare  the  value  with  the  shown  below.  Since  our  excitation  frequency  was  far  above  the

resonance  frequency,  we  observe  a  very  strong  amplitude  damping  in  the  resulting  oscilla -

tion.  

In  control  engineering,  the  differential  equation  of  the  same  form,  describes  a  so-called  PT2

element,  or in other  words  a 2nd order  low-pass  filter.

The resonant  angular  frequency  is 

In[  ]:= resonant = N[Sqrt[d /m - k ^ 2 / (2 m ^ 2)]] (* angular frequency *)

Out[  ]= 0.69282

The amplitude  at that angular  frequency  would  be 

In[  ]:= N[2 Abs[FourierCoefficient [F[t], t, 1,

FourierParameters → {1, 2 Pi}] / P[ⅈ resonant ]]]

Out[  ]= 1.42857

Let  us  test  it  and  see  the  phase  shift  (delay)  in  the  solution  for  excitation  with  the  resonant

frequency

In[  ]:= ω := 0.69282 ; F[t_] := F0 Cos[ω t] ; solution := DSolve [dgl, y, t];

f = solution 〚1, 1, 2〛 /. {C[1] → 0, C[2] → 0};

Plot[{f[t], F[t]}, {t, 0, 20}, PlotStyle → {Red, Blue}, PlotStyle → Directive [

Thickness [0.005 ]], PlotRange → All, ImageSize → Medium ,

PlotLabels → {"f[t]", "F[t]"}] (* Force and Solution *)

FindMaximum [f[t], {t, 0, 6}]

Out[  ]=

f [t]

F[t]

5 10 15 20

-1.5

-1.0

-0.5

0.5

1.0

1.5

Out[  ]= {1.42857 , {t → 2.06034 }}

Below  is  the  amplitude  response  and  the  phase  response  of  the  pendulum,  considered  as  a

linear  transmission  system  in analogy  to a 2nd order  lowpass  filter.  

A representation  only  for  positive  angular  frequencies  is sufficient  due  to the known  symme -

tries.  
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In[  ]:= p1 = Plot[Abs[1 / P[ⅈ ω]], {ω, 0, 6.3}, PlotStyle → Directive [

Blue, Thickness [0.008 ]], PlotRange → All,

ImageSize → Small , PlotLegends → Style["Abs[1/P[ⅈω]]", 12]]

FindMaximum [Abs[1 / P[ⅈ ω]], {ω, 0, 2}]

Out[  ]=

1 2 3 4 5 6

1

2

3

4

5

6

7

Abs [1/P[ⅈω]]

Out[  ]= {7.14286 , {0.69282 → 0.69282 }}

In[  ]:= p2 = Plot[Arg[1 / P[ⅈ ω]], {ω, 0, 6.3}, PlotStyle → Directive [

Blue, Thickness [0.008 ]], PlotRange → All,

ImageSize → Small , PlotLegends → Style["Arg[1/P[ⅈω]]", 12]]

Out[  ]=

1 2 3 4 5 6

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Arg [1/P[ⅈω]]

The  maximum  of  the  frequency  response  shows  again  the  amplification  at  the  resonant

frequency  from  amplitude  0.2  of F to 1.4287  in the  system  response  f, when  the  system  input

F has  that  resonant  frequency,  and  you  can  see  the  delay  between  input  and  response  from

the phase  shift  (about  2s in that example).

b) A Fourier  series  as periodic  force  

Example  2. Now,  we  consider  the same  equation  with excitation

F[t] = F0 ∑k=1∞ Cos [3 k t]  k2 = F0 ∑
k=-∞,k≠0

+∞
Exp [ⅈ 3 k t]  2 k2 .

The series  is the 2π/3-periodic  extension  of f, on [0, 2π/3[ defined  by

f [t ] = F0 (3 t - π)2 /4 - π2/12).  

The function  is continuous  and piecewise  continuously  differentiable.  

With the periodic  transfer  function  having  the Fourier  coefficients  1/P(ⅈ  3 k) (the basic  

angular  frequency  is now 3 rad / s, the according  period   T=2π/3 s) the periodic  solution  u can 

immediately  be written  in the form  of a Fourier  series.  It is  

                                            u[t]  = ∑
k=-∞,k≠0

+∞
F0 ⅇⅈ3kt  2 k2 P[ⅈ 3 k].  

For illustration  purposes  and to save excessive  calculation  time,  we will  content  ourselves  

with a partial  sum of the series  for the force  as an approximation  and a corresponding  

trigonometric  polynomial  as an approximation  for the solution.  We plot over  three  periods  

of the excitation  and of the solution.  The amplitude  attenuations  and phase  delays  of all 
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partial  oscillations  interact  in the resulting  pendulum  motion  and,  as usual,  the solution  is 

characterized  by smoothing,  which  is caused  mathematically  by the periodic  convolution,  is 

"less  angular"  than the excitation  and has significantly  less power  than the excitation.   

Physically  speaking,  the cause  of this smoothing  lies in the mass  inertia:  due to its inertia,  the 

mass  can no longer  follow  the excitation  frequency  after  just a few harmonics  due to its 

inertia.

Therefore,  for physical  considerations,  even  a few members  of the Fourier  series  solution  in 

the analysis  of damped  oscillations,  as in the example,  are sufficient  to very good  

approximations  of the "exact"  solution.  Simply  compare  the approximate  solutions  with 

only 5 as in the following  and up to 100 or 500 summands  of a partial  sum of this solution.     

In[  ]:= F[t_] := F0 SumExp[-ⅈ n 3 t]  2 n2 + Exp[ⅈ n 3 t]  2 n2 , {n, 1, 5}
u[t_] := F0 SumExp[-ⅈ n 3 t]  2 n2 P[-ⅈ 3 n]+ Exp[ⅈ n 3 t]  2 n2 P[ⅈ 3 n], {n, 1, 5}
g1 := Plot[u[t], {t, 0, 2 π}, PlotStyle → Directive [

Red, Thickness [0.008 ]], PlotRange → All, PlotLabels → Style["u[t]", 12]]

g2 := Plot[F[t],

{t, 0, 2 π}, PlotStyle → Directive [Blue, Thickness [0.008 ]],

PlotRange → All, PlotLabels → Style["F[t]", 12]]

Show [g1, g2]

Out[  ]=

u[t]

F[t]

1 2 3 4 5 6

-0.1

0.1

0.2

0.3

For  comparison  the  mean  squares  (squares  of  the  L2 -Norms, Powers  of  force  and  resulting  solution,

showing the loss of power:

In[  ]:= NIntegrate Abs[F[t]]2  (2 π / 3), {t, 0, 2 π / 3} (* system input *)

NIntegrate Abs[u[t]]2  (2 π / 3), {t, 0, 2 π / 3} (* system output *)

Out[  ]= 0.021607

Out[  ]= 0.000276477

Summary:  All  the  considerations  and  calculations  carried  out  here  for  the  pendulum  as  an

example  can  be  applied  analogously  to  stable  time-invariant  linear  transmission  systems,

which  are described  by differential  equations  as above  (also  of higher  orders).  

In  electrical  engineering,  they  are  the  basis  on  which  a  subject  such  as  “AC  calculations ”

(alternating  current  calculations)  with  the  concepts  of  frequency,  amplitude  and  phase

response  and  the  quantities  derived  from  these  such  as  the  “group  delay”  make  sense  in  the

first  place,  as real  signals  hardly  ever  have  a pure  sine  shape,  but  if they  are  time-limited  in a

time  interval  [0,T],  they  can  be  understood  and  treated  with  the  theory  of  Fourier  series.

Fourier  series  are  therefore  a  valuable  theoretical  tool  for  describing  a  large  number  of  pro-

cesses  in technology.  
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2.2 Fourier  series  in homogeneous  1D Heat  Equations

Example  3.   A  homogeneous  heat  conduction  equation  with  homogeneous  boundary

conditions. 

The  initial  boundary  value  problem  for  the  homogeneous  heat  conduction  equation  for  a

(thermally  thin)  rod  of  length  L,  whose  ends  are  ice-cooled,  described  as  the  interval  [0,L]

and an initial  temperature  f[x] in x ϵ [0,L],  is given  by the coefficient  a for the thermal  diffusiv -

ity (see textbooks  on physics)

                   ∂t u[x, t ] = a ∂x,x u[x, t ] , u[x, 0] = f [x], u[0, t ] = u[L, t ] = 0 for all t ⩾ 0. 

With  a  separation  approach  u[x,t]=v[x]  w[t]  one  obtains  -quite  analogous  to  the  solution  of

the  differential  equation  for  the  vibrating  string  in [1],  p.  2-4  and  exercise  A8  in [1],  5.7)  - the

Fourier  series  solution  u[x, t] = ∑
n=1

∞
bn ⅇ-λn

2
t

Sin [nπx /L]  with  the  Fourier  sine  coefficients  of  the

2L-periodic  odd extension  of f and λn = n π a L .

It has  a uniformly  convergent  Fourier  series.  For  demonstration,  we  choose  L=1  m and  f as  a

parabolic  arc  f[x]=5x(L-x)  in  C0  (degrees  Celsius)  and  the  thermal  diffusivity

a = 117 · 10-6 m2  s of copper  at about  20 C0 .  In the following,  we calculate  the Fourier  coeffi -

cients  of f and plot  an approximation  as a 3D graph  that  illustrates  the temperature  equaliza -

tion in the rod for t>=0.

In[  ]:= Clear ["Global` *"]; L := 1;

f[x_] := 40 x (L - x); a := 117 × 10 ^ (-6);

b[n_] = 2 / L Integrate [f[x] Sin[n Pi x / L], {x, 0, L}]

Out[  ]= -
80 × (-2 + 2 Cos[n π] + n π Sin[n π])

n3 π3

Here  is  a  Fourier  series  approximation  for  the  solution  as  a  trigonometric  polynomial  of

degree  m and a representation  with m=4.  It decreases  (slowly)  to zero with increasing  time:  
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In[  ]:= u[m_, x_, t_] := Sum[b[n] Exp[-(n Pi Sqrt[a] / L)^ 2 t] Sin[n Pi x / L], {n, 1, m}]

Plot3D u[4, x, t], {x, 0, L}, {t, 0, 3600},

PlotRange → All,

AxesLabel → " Position x in m ", " Time t in s ", " Temperature u in C0 ",
AxesStyle → Directive [Black , 12], ViewPoint → {-3, 2, 3}, ImageSize → Medium 

Out[  ]=
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Example  4.  Now  to the  same  problem  with  Neumann  boundary  conditions , i.  e.,  physically

with  insulated  bar  ends,  so  that  no  heat  flows  over  the  edge,  mathematically

∂x T [0, t ] = ∂x T [L, t ] = 0 for the temperature  T[x,t].

  

We  solve  the  problem  step  by  step  analogous  to  the  procedure  behind  the  solution  (for  own

work)  in  the  previous  example.  The  separation  approach  u[x,  t]  =  v[x]  w[t]  leads  to  two  ordi-

nary  differential  equations  v'' + cv = 0 and w' + αcw = 0 and  the boundary  condition  v'[0]  = 0,

v'[L]  = 0 (the thermal  diffusivity  is now denoted  by α , the temperature  by T) : 

With  a  separation  approach,  insertion  into  the  equation  and  the  boundary  conditions  we

obtain  for

                                                                      ∂tT[x, t] -α ∂x,xT[x, t] = 0 and  ∂x T [0, t ] = ∂x T [L , t ] = 0 :  

In[  ]:= sol1 = DSolve [{ v ''[x] + c v[x] ⩵ 0}, v[x], x]

Out[  ]= v[x] → 1 Cos c x+ 2 Sin c x
In[  ]:= v[x_] = sol1〚1, 1, 2〛
In[  ]:= 1 Cos  c x + 2 Sin  c x

Out[  ]= 1 Cos  c x + 2 Sin  c x

We  insert  the  boundary  condition  into  the  solution  part  v  and  obtain  from  v'[0]  =  0  that  2

must  be zero,  if c > 0. (For c < 0 there  is only  the trivial  solution).

In[  ]:= v '[0]

Out[  ]= c 2

It remains  v' [L] = - C[1]  c  Sin[  c  L]=0.  

The resulting  possibilities  for the constant  c have  the form

 cn  = n2 π2  L2 for c , which provide all solutions .

In[  ]:= Solve [Sqrt[c] L ⩵ n Pi, c]

Solve : Solutions may not be valid for all values of parameters .

Out[  ]= c → n2 π2
First  result:  A  sequence  of  possible  solutions  vn[x]  ,  n=1,2,  ...,  vn[x] = an Cos cn x,  fulfill -

ing all boundary  conditions.

Now,  to the second  part  of the separation  approach:

In[  ]:= sol2 = DSolve [w '[t] + α n ^ 2 Pi ^ 2 / L ^ 2 w[t] ⩵ 0, w[t], t]

Out[  ]= w[t] → ⅇ-n2 π2 t α 1
We  now  obtain  a  Fourier  series  solution  by  superposition  and  write  down  a  section  of  the

solution  series  of degree  m2 

( T[x,  t] = c0 is also a solution):

T[m1_ , m2_ , x_, t_] = c0 + Sum  a[n] Exp  - α n2 π2 t

L2
 Cos [n π x /L], {n, m1 , m2 }

According  to the  given  initial  condition,  the  a[n]  must  therefore  be the  Fourier  cosine  coeffi -

cients  of  the  initial  condition  f,  c0  is  the  mean  value  of  f.  Using  the  same  data  as  in  the  first

example,  we  calculate  and  plot  the  approximate  temperature  curve  with  the  partial  sum  of

degree  8.   With  varying  parameters  m1,  m2  you  can  see  the  development  of  sections  of  the
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series.

In[1]:= Clear ["Global` *"];

L := 1;

f[x_] := 40 x (L - x);

alpha = 117 × 10^ (-6);

a[n_] = N[2 / L Integrate [f[s] Cos[n Pi s / L], {s, 0, L}]]

c0 = 1 / L Integrate [f[s], {s, 0, L}]

Out[5]= -
2.58012 × 3.14159 n + 3.14159 n Cos [3.14159 n] - 2. Sin [3.14159 n]

n
3

Out[  ]=

20

3

You  can  recognize  an  extensive  temperature  equalization  after  about  10  minutes  in  the

entire  rod.  

As  the  time  increases,  the  temperature  converges  everywhere  towards  the  average  value

c0=20/3  C0 of f, as can be seen  from  the solution  series  . Here  the temperature  after  600 s  and

the mean  value  of f :

In[7]:= T[m1_ , m2_ , x_, t_] :=

c0 + Sum[a[n] Exp[-alpha n ^ 2 Pi ^ 2 t / L ^ 2] Cos[n Pi x / L], {n, m1, m2}]
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In[  ]:= p0 = Plot3D [N[T[1, 8, x, t]], {x, 0, 1}, {t, 0, 600},

PlotRange → All, AxesLabel → {"x", "t", "Temperature "},

AxesStyle → Directive [Black , 10],

ViewPoint → {-1, 2, 2}, Ticks → {{0, 1}, {0, 200, 400, 600}, {2, 6, 10}}]

Out[  ]=

In[  ]:= p1 = Plot[T[1, 8, x, 600], {x, 0, L}, PlotStyle → Directive [

Red, Thickness [0.008 ]], PlotRange → All, PlotLabels → Style["T[1,8,x,600]",

p2 = Plot[c0, {x, 0, L}, PlotStyle → Directive [

Blue, Thickness [0.01]], PlotRange → All, PlotLabels → Style["mean of f", 12

p2a = Show [p1, p2]

Out[  ]=

T[1,8,x,600 ]

mean of f

0.2 0.4 0.6 0.8 1.0

6.5

6.6

6.7

6.8

6.9

The  following  is  a  simple  animation  for  temperature  equalization  using  Mathematica  over

the  course  of  2  minutes.  Since  we  are  calculating  with  an  approximate  sum  for  the  initial

condition,  the  boundary  temperature  is  not  exactly  zero  at  the  beginning,  as  a  partial  sum

for  the  2 -  periodically  extended  parabolic  arc  never  reaches  into  the  edges.  You  can  use  the
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animation  copying  it  into  an  own  Mathematica  notebook  and  taking  it  as  first  sample  for

similar  purposes.

Animate [Plot[N[T[1, 8, x, t]], {x, 0, 1}, PlotRange → {0, 10},

PlotStyle → Directive [Red, Thickness [0.015 ]], ImageSize → Small ], {t, 0, 120},

AnimationRepetitions → 1, AnimationRate → 20, RefreshRate → 10]

Out[  ]=

t

0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

Finally,  here  is  a  quick  test  to  check  that  everything  is  correct.  T  solves  the  homogeneous

equation  and  each  partial  sum  of  the  Fourier  series  solution  fulfills  the  boundary  conditions

by construction:

In[  ]:= test = Chop [FullSimplify [∂t T[1, 8, x, t] - alpha ∂x,x T[1, 8, x, t]]]

D[T[1, 8, x, t], x] /. x → 0

Chop [D[T[1, 8, x, t], x] /. x → L]

Out[  ]= 0

Out[  ]= 0.

Out[  ]= 0

Note: Both  examples  are "unphysical"  mathematical  models  in which  no heat  exchange  with

the environment  is taken  into account,  which  would  play a role under  real  conditions.

Example  5. A homogeneous  heat  equation  with  inhomogeneous  boundary  conditions  

Consider  the problem

               ∂t u[x, t ] = k ∂x,x u[x, t ] , u[x, 0] = f [x],

u[-π, t ] + u[π, t ] = 2, ∂x u[-π, t ] + ∂x u[π, t ] = 0 for t ⩾ 0.

We  assume  that  k>0  and  f   is  continously  differentiable  in  ]-π ,π[  and  compatible  with  the

boundary  conditions , i.e.,  f(-π)+f(π)=2 and  there  exist  f'(±π) with  f'(-π)+f'(π)=0.  For  simplicity

we set k=1.

This  is  a  mathematical  model  for  the  evolution  of  the  temperature  u(x,t)  at  the  point  x  at

time  t  of   a  thin  rod  identified  with  [-π ,π]. The  boundary  condition  for  u  says  that  the  mean

temperature  at  the  endpoints  is  kept  at  1,  while  the  boundary  conditions  for  ∂x u  mean  that

the  heat  flux  at  the  endpoints  is  equal  in  magnitude  but  with  opposite  sign,  i.e.,  heat  enter -

ing or leaving  the rod at both  ends  at the same  rate.  

One  can  prove  that  the  problem  has  a  unique  solution  u ϵ  C 1([-π,π]x[0,∞[)⋂C 2(]-π,π[x]0,∞[)

(cf. [9]).  The solution  can be obtained  with u[x,t]=v[x,t]+1,  where  v solves  the equation  

Chapter 2  Application of Fourier Series to Linear Differential Equations 39



∂t v[x, t ] = k ∂x,x v[x, t ] , so that v[x, 0] = f [x] - 1,

v[-π, t ] + v[π, t ] = 0, ∂x v[-π, t ] + ∂x v[π, t ] = 0 for x in [-π, π], t ⩾ 0.

With separation  of the variables  we obtain  as before

In[  ]:= sol1 = DSolve [{ V ''[x] + c V[x] ⩵ 0}, V[x], x];

In[  ]:= V[x_] = sol1〚1, 1, 2〛
Out[  ]= 1 Cos c x+ 2 Sin c x
In[  ]:= Assuming [c ≥ 0, Solve [{V[-π] + V[π] ⩵ 0, V '[-π] + V '[π] ⩵ 0}, {1 , 2} ]]

Out[  ]= {{1 → 0, 2 → 0}}

In[  ]:= V[-π] + V[π]
V '[-π] + V '[π]

In[  ]:= 2 1 Cos c π

Out[  ]= 2 1 Cos c π
Thus,  imposing  the boundary  conditions  we obtain  the solution  with negative  c = -λ , 

λ = -(n + 1 / 2)2, n ϵ ℕ0. 

Inserting  into the second  equation  of the separation  of variables  approach  w'[t]=λ  w[t]

In[  ]:= sol2 = DSolve [ w '[t] + (n + 1 / 2)^ 2 w[t] ⩵ 0, w[t], t]

solT[t] = sol2〚1, 1, 2〛
Out[  ]= w[t] → ⅇ-

t

4
-n t-n2 t 1

Out[  ]= ⅇ-
t

4
-n t-n

2
t 1

we  arrive  at  f(x)-1=v(x,0)= ∑n=0
∞ (Ancos(nx+x/2)+Bnsin(nx+x/2)).  We  thus  can  expand  f(x)  as  a

trigonometric  series  with  the  basis  functions  cos(nx+x/2),  sin(nx+x/2),  n≥0,  which  build  also

an orthogonal  system  in L2([-π,π]). 

We  obtain,  for  example,  with  f(x)=(x/π) 2  and  u=v+1  an  approximation  u(x,t,m)  of  degree  m

as below

In[  ]:= f[x_] = (x / π)2

A[n_] = 1 / Pi Integrate [(f[x] - 1) Cos[n x + x / 2], {x, -Pi, Pi}]

Out[  ]=

x2

π2

Out[  ]= -
16 × (2 Cos[n π] + (1 + 2 n) π Sin[n π])

(1 + 2 n)3 π3

In[  ]:= B[n_] = 1 / Pi Integrate [(f[x] - 1) Sin[n x + x / 2], {x, -Pi, Pi}]

Out[  ]= 0

In[  ]:= u[x_, t_, m_] := 1 + Sum[

Exp[- t / 4 - n t - n ^ 2 t] (A[n] Cos[n x + x / 2] + B[n] Sin[n x + x / 2]), {n, 0, m}]

In[  ]:= u[x, t, 5]
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Out[  ]= 1 -
32 ⅇ-t4

Cos x
2


π 3
+
32 ⅇ-9 t4

Cos 3 x
2



27 π 3
-
32 ⅇ-25 t4

Cos 5 x
2



125 π 3
+

32 ⅇ-49 t4
Cos 7 x

2


343 π 3
-
32 ⅇ-81 t4

Cos 9 x
2



729 π 3
+
32 ⅇ-121 t4

Cos 11 x
2



1331 π 3

Illustration of the solution

In[  ]:= p1 = Plot[{f[x], u[x, 4, 5], u[x, 10, 5]}, {x, -Pi, Pi},

PlotLabel → "u(x,t,5)", PlotStyle → {Black , Red, Blue}, PlotRange → {0, 1},

PlotLabels → {"t=0", "t=4", "t=10"}, Ticks → {{-π, 0, π}, Automatic }]

Out[  ]=

t=0

t=4

t=10

-π π

0.2

0.4

0.6

0.8

1.0

u(x,t,5)

In[  ]:= p0 = Plot3D [u[x, t, 5], {x, -Pi, Pi}, {t, 0, 10},

PlotRange → {0, 1}, AxesLabel → {"x", "t", "Temperature "},

AxesStyle → Directive [Black , 10], ViewPoint → {-1, -2, 1}]

Out[  ]=
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2.3 Fourier  Series  in inhomogeneous  1D Heat  Equations

Example  6. We now consider  an inhomogeneous  problem.  For the equation

                         ∂t U [x, t ] - α ∂x,x U [x, t ]=G[x,t] 

with the right-hand  side G we choose  a heat  flux density  that is constant  over  time,  so that 

G[x,t]=  0.6  (UnitStep[x-L/4]-UnitStep[x-3L/4])  (in  C 0/s).  We  also  choose  as  initial  condition

U[x,0]=0  for  x  in  [0,L]  and  as  last  Neumann  boundary  conditions.  The  model  describes  a

uniform  heating  of  our  copper  rod  around  the  center  of  the  rod,  which  is  otherwise  thought

to be perfectly  insulated.  (Temperature  now  denoted  as U,  so that  - as long  as the  animation

above  is still  running  - there  is no naming  conflict).  

We  start  with  an  approach  using  "variation  of  the  constants",  i.e.,  we  use  the  solution

approach  

U[x,t]  = c0[t]+  ∑n=1
∞ cn[t]  Cos[nx/L] , insert  this  into  the  equation  and  use  the  boundary  and

initial  conditions  (please  carry  out for practice).  

This  results  in  cn ' [t]  +  (α n ^ 2 π^ 2) / L ^ 2 cn[t]  =  gn  for  n>0,  c0[t ] = g0 t.  The  constants  gn

denote  the Fourier  cosine  coefficients  of the inhomogeneity  G, g0 the mean  value  of G. Calcu -

lation  for G[x,t]  with L=1 m and α :=117 10^(-6)  m^2/s  as above  results  in c0[t] = g0 t 

(from  c0' [t] = g0 and c0[0]=0).

In[8]:= L = 1;

G[x_] = 6 / 10 (UnitStep [x - L / 4] - UnitStep [x - 3 / 4 L])

g[n_] = 2 / L Integrate [G[x] Cos[n Pi x / L], {x, 0, L}]

g0 = 1 / L Integrate [G[x] , {x, 0, L}]

Plot[G[x], {x, 0, L}, PlotLabel → "G[x]", ImageSize → Small ]

Out[9]=

3

5
-UnitStep - 3

4
+ x+ UnitStep - 1

4
+ x

Out[10]=

6 -Sin n π
4
+ Sin 3 n π

4


5 n π
Out[11]=

3

10

Out[12]=

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

G[x]

In[13]:= sol := DSolve [

{D[c[n, t], {t, 1}] + α n ^ 2 Pi ^ 2 / L ^ 2 c[n, t] ⩵ g[n], c[n, 0] ⩵ 0}, c[n, t], {n, t}]
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In[14]:= ccoeff [n_, t_] = sol〚1, 1, 2〛

Out[  ]= -

6 ⅇ-n
2 π 2

t α -1 + ⅇn2 π 2
t α  Sin  n π

4
 - Sin  3 n π

4


5 n
3 π3 α

We consider  a partial  sum  of the Fourier  series  of the exact  solution  for  the problem  and  plot

it.  Only  every  fourth  Fourier  coefficient  is  non  -  zero.  In  order  to  reproduce  the  step  -  like

inhomogeneity  well,  we  choose  a  higher  order  (m  =  30)  of  the  trigonometric  polynomial  to

approximate  the heat  flux density  and a corresponding  order  of the trigonometric  approxima -

tion  polynomial  for  the  solution.  The  "step  form"  of  the  initially  inhomogeneity  remains

largely  intact  in the solution  for quite  some  time before  the heat  balance  takes  effect.

In[15]:= α = 117 × 10 ^ (-6);

U[m_, x_, t_] := g0 t + Sum[ccoeff [n, t] Cos[n Pi x / L], {n, 1, m}]

Plot3D N[U[30, x, t]], {x, 0, L}, {t, 0, 600},

PlotRange → All, AxesLabel → "Position x in m ", " Time t in s ", "U in C0 ",
AxesStyle → Directive [Black , 12], ViewPoint → {-2, 2, 3},

Ticks → {{0.0, 0.5, 0.75}, {60, 180, 300, 600}, {0, 100, 200, 300}}

Out[17]=

Here again  the temperature  evolution  as an animation.

A  mathematically  precise  treatment  of  differential  equations  with  discontinuous  right-hand

sides,  such  as G here,  is possible  within  the framework  of distribution  theory  (see[1]).

In the right  graphics  the temperature  development  is shown,  smoothed  by arithmetic  averag -

ing  of  the  partial  sums  of  the  result  at  some  distance  from  the  directly  heated  interval

[L/4,3L/4].  We  see  an  approximately  linear  increase  in  the  temperature,  which  becomes

stronger  as  you  move  closer  to  the  interval  that  is  heated  (Test  it  yourself.)  Here  we  look  at
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x=L/5:

In[  ]:= a1 = Animate [Plot[N[U[30, x, t]], {x, 0, 1}, PlotRange → {-2, 260},

PlotStyle → Directive [Blue, Thickness [0.015 ]], ImageSize → Small ], {t, 0, 600},

AnimationRepetitions → 1, AnimationRate → 5, RefreshRate → 50];

Usmoothed [m_, x_, t_] :=

g0 t + Sum[ccoeff [n, t] (1 - n / (m + 1)) Cos[n Pi x / L], {n, 1, m}]

a2 = Plot[N[Usmoothed [30, L / 5, t]], {t, 0, 600}, PlotRange → {0, 200},

PlotStyle → Directive [Blue, Thickness [0.008 ]],

PlotLabels → Style["U[30,L/5,t]", 12]];

GraphicsRow [{a1, a2}]

Out[  ]=

0.2 0.4 0.6 0.8 1.0

50

100

150

200

250

U[30,L/5,t]

0 100 200 300 400 500 600

50

100

150

200

And  the  final  test  that  everything  is  correct:  The  mean  temperature  after  600  s  corresponds

to  the  heat  supplied  corresponding  to  0.3  C 0/s  on  average  for  the  whole  rod  with  the

assumed  perfect  insulation  and  the differential  equation  as well  as the initial  and  the bound -

ary conditions  are fulfilled:

In[  ]:= 1 / L Integrate [U[30, x, 600], {x, 0, L}]

test = Chop [Simplify [

∂t U[30., x, t] - α ∂x,x U[30, x, t] - (g0 + Sum[g[n] Cos[n Pi x / L], {n, 1, 30}])]]

D[U[30, x, t], x] /. x → 0

D[U[30, x, t], x] /. x → L

Out[  ]= 180

Out[  ]= 0

Out[  ]= 0

Out[  ]= 0
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2.4 Fourier  Series  Solution  for the Potential  Equation  on a Circular  Disk

The potential  equation  on a circular  disk of radius  R>0 is given  in polar  coordinates  by 

Δu =
∂²
∂r²

u + 
1

r

∂
∂r

u + 1

r²

∂²

∂ϕ²
u for 0< r <R. 

For  a  given  boundary  condition  u(R,ϕ)=U(ϕ)  with  the  Fourier  coefficients  ck  (0≤ϕ<2π)  the

equation  has  the  unique  Fourier  series  solution  u(r,ϕ)=∑k=-∞
+∞

ck (r/R) k  ⅇⅈkϕ .  The  solution

has  no  local  extrema  in  the  interior  of  the  disk,  it  attains  minimum  and  maximum  at  the

boundary.

(For Details  see [1],  section  5.3). 

Example  7.  As  an  example,  we  illustrate  the  solution  for  the  simple  boundary  condition

U(ϕ)=cos(ϕ)+2  sin(2ϕ)  for R=2 with two possible  representations.

First  a  “conventional”  view  with  a  Cartesian  x,y,z  coordinate  system.  The  polar  coordi -

nates  are transformed  to Cartesian  in the plot,  i.e.,  

r=Sqrt[x^2+y^2],  phi=Arg[x+I  y]. 

In[  ]:= R := 2;

u[r_, phi_] =

(r /R Cos[phi] + 2 (r /R)^ 2 Sin[2 phi]) (HeavisideTheta [r] - HeavisideTheta [r - R])

Out[  ]= (-HeavisideTheta [-2 + r] + HeavisideTheta [r])
1

2
r Cos[phi] +

1

2
r2 Sin[2 phi]

In[  ]:= Plot3D [u[Sqrt[x ^ 2 + y ^ 2], Arg[x + I y]], {x, -2, 2}, {y, -2.1, 2.1},

PlotRange → All, Boxed → False , PlotStyle → Directive [Normal ], Axes → True,

AxesLabel → {"x", "y", " u[x,y]"}, AxesStyle → Directive [Black , Plain, 14],

RegionFunction → Function [{x, y, z}, x ^ 2 + y ^ 2 ≤ R], ViewPoint → {0.5, -3, 0.5}]

Now  the  same  illustrated  with  a rectangular  r,ϕ  coordinate  system , which  better  shows  the

boundary  function  for  r=R=2  and  that  there  are  no  local  extremal  values  of  u  in  the  interior

of  the  circular  disk.  You  can  change  the  view  and  size  by  dragging  the  image  with  your

mouse.  
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In[  ]:= p1 = Plot[Cos[ϕ] + 2 Sin[2 ϕ], {ϕ, 0, 2 Pi},

ImageSize → Small , PlotLegends → {"U[ϕ]"}];
min = FindMinimum [Cos[ϕ] + 2 Sin[2 ϕ], ϕ];
p2 = Plot3D [{u[r, phi], min}, {r, 0, R}, {phi, 0, 2 Pi }, PlotRange → {-3, 3},

AxesLabel → {"r", "ϕ", "u[r,ϕ]"}, AxesStyle → Directive [Black , Plain, 12]];

Show [p2]

Show [p1]

1 2 3 4 5 6

-3

-2

-1

1

2

3

U[ϕ]

If  the  equation  describes  physically  a  Dirichlet  problem  for  heat  conduction  with  a  given

time-independent  temperature  U(ϕ)  on  the  boundary,  then  the  solution  is  the  stationary

temperature  of the disk generated  by the boundary  temperature.  
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2.5 An Initial  Boundary  Value  Problem  for a Force-Free  Vibrating  String

In the following  we show  the solution  for a force-free  vibrating  string  of length  L according  

to the equation  

                                            ∂²

∂ t²
u = c2 ∂²

∂x²
u 

with initial  condition  u(x,0)=f(x)  and boundary  conditions  u(0,t)=u(L,t)=0  for all t. 

The solution  u(x,t)  is the transversal  displacement  of the string  at x and time t. The constant  

c is the velocity  of the wave.  

By separation  of the variables  one can find the unique  solution  in the form  of a Fourier  series  

provided  the oddly  periodically  extended  initial  condition  f(x)=∑n=1
∞ an sin(nπx/L) is twice  

continuously  differentiable  on the entire  axis ℝ and f''' is piecewise  continuous.  For the 

derivation  of this,  please  see [1], 1.2 and 5.4. 

The Fourier  series  of the solution  is then 

                                   u(x,t)=  ∑n=1
∞ an sin(nπx/L) cos(cnπt/L), 

where  the constants  an are the Fourier  sine coefficients  of f. 

By the trigonometric  addition  theorems  D'Alembert's  representation  of the solution  can be 

obtained  as (see again  [1], 5.4) as

                                  u(x, t ) =
1

2
( f(x-ct)+f(x+ct)).  

Thus,  the solution  is a superposition  of two waves  with the shape  of f, which  move  in 

opposite  directions  with velocity  c and are reflected  at the string  ends  with opposite  phase.

Example  8. We illustrate  the solution  for a smooth  initial  condition f

First  we set  up the  initial  condition  as function  on the  line  from  -3L  to 3L.   Then  we extend  it

to an  odd  6L-periodic  function  on  the  line.  We  plot  the  solution  for  x and  t over  2 time  units

showing  the superposition  and reflection  at the string  ends.  We use D’Alembert’s  representa -

tion,  because  it is hardly  possible  to calculate  f and u as Fourier  series.  
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In[  ]:= Clear ["Global` *"];

h[x_] = Piecewise [{{Exp[-1 / (1 - x ^ 2)], x < 1 && x > -1}, {0, x ⩾ 1 && x ⩽ -1}}];

f1[x_] = h[4 x - 2]; L := 1;

f[x_] = f1[x] - f1[x + 1] + f1[x + 2] - f1[x + 3] - f1[x - 1] + f1[x - 2];

(* this is an odd extension from -3l to 3L *)

ic = Plot[f[x], {x, -3 L, 3 L}, PlotRange → All,

PlotLegends → Placed [{"Initial f"}, Above ], ImageSize → Small ];

c = 1;

u[x_, t_] = 1 / 2 (f[x - c t] + f[x + c t]);

sol = Plot3D [u[x, t], {x, 0, L}, {t, 0, 2}, PlotRange → All, AxesLabel →
{"x", " Time t", "u[x,t]"}, AxesStyle → Directive [Black , Plain, 12]];

GraphicsRow [

{ic,

sol}]

Out[  ]=

Problem:  Since  it  is  not  that  easy  to  provide  smooth  initial  conditions  and  their  Fourier

series  expansions,  it  is  desirable  to  work  with  simple  mathematical  models  as  initial  condi -

tions  and  later  as  right  hand  sides  for  inhomogeneous  equations.  We  show  an  example  with

a piecewise  linear  function  f and  will  readily  recognize  that  one  does  not  obtain  solutions  in

the classical  sense,  because  these  are  no more  differentiable  functions.  The  question  then  is,

what  they  mean  as solutions  of second  order  differentiable  equations.  These  questions  could

not be solved  until  the mathematical  progress  from  classical  theory  to distribution  theory.  

Distribution  theory  was  developed  about  1935  by  S.  L.  Sobolev  (1908-1989),  in  the  years

1945-1950  by  L.  Schwartz  (1915-2002)  and  others.  There,  the  concept  of  generalized  deriva -

tives  and  of  generalized  solutions  is  introduced,  also  called  weak  solutions  for  differential

equations.  This  allows  much  easier  calculations  and  has  opened  up a myriad  of  applications

in mathematics  and all other  scientific  areas.  

We  will  discuss  this  in  a  subsequent  booklet.  Here,  we  illustrate  the  problem  with  a  piece -

wise  linear  initial  condition,  which  could  be  a  simple  model  of  an  initially  deflected  string,

which  is the released.  
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Example  9.  A simple  model  for  an  initially  deflected  string  and  the  “solution”  of  the  initial

boundary  value  problem

Clear [f , f1, x, t];

f1[x_] := 2 x (UnitStep [x + 1 / 4] - UnitStep [x - 1 / 4]) +

2 × (1 - x) / 3 (UnitStep [x - 1 / 4] - UnitStep [x - 1]) -

2 / 3 (x + 1) (UnitStep [x + 1] - UnitStep [x + 1 / 4]);

pf1 = Plot[f1[x], {x, 0, 1}, PlotLegends → Placed [{"Initial condition f"}, Above ],

PlotRange → All, ImageSize → Small ];

f[x_] := f1[x + 2] + f1[x] + f1[x - 2]; (* extension as periodization *)

string [x_, t_] := 1 / 2 (f[x + t] + f[x - t]); (* D'Alembert 's solution form *)

pf2 = Plot3D [string [x, t], {x, 0, 1}, {t, 0, 2}, Mesh → 30,

ColorFunction → "AvocadoColors ", Axes → {True, True, False },

Ticks → {{0, 0.25, 1}, {0, 2}}, Boxed → False ,

AxesLabel → {"Position x", "Time t"}, ViewPoint → {1.5, -2, 3},

AxesStyle → Directive [Black , Plain, 12]];

GraphicsRow [{pf2, pf1}]

You  clearly  observe  that  this  solution  is  not  differentiable  and  thus  cannot  be  a  solution  in

the  classical  sense.  We  come  back  to  the  problem,  once  we  have  seen  how  the  theory  of

distributions  can  overcome  these  problems  in  classical  theory.  Distribution  theory  was  a

major  step  in  Applied  Mathematics  solving  linear  problems,  that  had  existed  for  centuries.

Distribution  theory  offers  new  methods  with  algorithms  for  solving  numerically  uncount -

able problems  in science  and engineering.
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2.6 Solution  of a Kepler  Equation  by Fourier  Series  Expansion

Kepler’s  equation  for the eccentric  anomaly

Kepler’s  equation  (J. Kepler  1571-1630)  for the elliptic  orbit  of a planet  P is

                    ϕ(t)-ϵ  sin(ϕ(t))=ωt   (1). 

Here,  ω=2π/T is the angular  frequency  with orbital  period  T , 0⩽ϵ<1 the eccentricity  of the 

ellipse  and ϕ(t) the eccentric  anomaly  at time t (see Fig.  below).

For  all  t  ϵ  ℝ  the  following  is  valid:   
ⅆϕ
ⅆt

(t)  =  ω/(1-ϵ  cos(ϕ(t))  >  0.  Furthermore,  ϕ(0)=0  and

ϕ(T)=2π .  Therefore,  ϕ(t)  is  monotonically  increasing  with  t  and  sin(ϕ(t))  must  be  an  odd

function  of  t  due  to  the  motion’s  symmetry.  This  motivates  the  solution  approach

ϕ(t)=ωt+∑k=1
∞ bksin(kωt).  This  solution  by  Fourier  series  expansion  goes  back  to  J.  L.

Lagrange  and F. W. Bessel.  To obtain  the coefficients  bk  we transform  the according  integral:  

bk =
4

T ∫0

T /2ϵ sin(ϕ) sin(nωt) ⅆ t  

    = - 
4 π sin(ϕ) cos(nωt)

nωT 0
T /2

 + 
4

nωT ∫0

T /2
cos(nωt)

ⅆ
ⅆt
(ϵ sin(ϕ)) ⅆ t  

through  integration  by  parts.  Thus,  with   ϕ(T/2)=π  and  differentiation  of  (1)  above  and  with

substitution  ϕ=ϕ(t)  

bk = 
4

nωT ∫0

T /2ϕ• -ω cos(nωt) ⅆ t  = 
2

nπ ∫0

π
cos(nωt) ⅆϕ 

      = 
2

nπ ∫0

π
cos(n(ϕ- ϵ sin(ϕ)) ⅆϕ = 

2

n
Jn(nϵ)

Here  Jn  is the Bessel  function  of the first  kind  implemented  in Mathematica  as BesselJ[n,z].  It

can be evaluated  to arbitrary  numerical  precision.
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Example  10. Eccentricity  and orbit  of Halley’s  Comet

We  show  a plot  of  a  ϕ(t)  with  the  eccentricity  ϵ=0.967  of  Halley's  Comet  by  a  partial  sum  of  the

computed  Fourier  series.  

In[  ]:= eps = 0.967 ;

T = 75;

ω = 2 Pi / T;

approxKeppler [t_] = ω t + Sum[2 / n BesselJ [n, n eps] Sin[n ω t], {n, 1, 30}];

Plot[{ω t, approxKeppler [t]}, {t, 0, 75}, Axes → True,

AxesLabel → {"years ", None }, Ticks → {{0, T / 2, T}, {0, 2 Pi}}]

Out[  ]=

75

2
75

years

2 π

On  the  following  page  the  corresponding  orbit  of  Halley’s  Comet  with  its  astronomical  data

and  the  approximation  from  above.  A  picture  of  the  comet  presented  on  NSSDC’s  Photo

Gallery,  NASA  ID LSPN-1725  is also shown  at the cover  page  of this title.  

In[  ]:= eps = 0.967 ;

a = 17.834 ;

b = a Sqrt[1 - eps ^ 2];

y[x_] = b / a Sqrt[a ^ 2 - x ^ 2];

e = Sqrt[a ^ 2 - b ^ 2];(*astronomical data*)

xpos[t_] = a Cos[approxKeppler [t]];

ypos[t_] = b Sin[approxKeppler [t]];(* position according to the approximation

with the above Fourier partial sum with the Bessel functions *)

p1 = Plot{y[x], -y[x]}, {x, -18, 18}, AspectRatio → Automatic , PlotStyle →
{Brown , Brown }, PlotLegends → Placed "Orbit of Halley 's Comet ,

in blue from t=0 to t=2 years starting from aphelion ,

AU about 150x106 km, the red focus is the sun", Above ,
Axes → True, AxesLabel → {AU, AU};

p2 = Graphics [{PointSize [Large ], Red, Point [{-e, 0}]}];

(*plot of the focus *)p3 = ParametricPlot [{xpos[t], ypos[t]},

{t, 0, 2}, PlotStyle → {Blue, Thick }, AspectRatio → Automatic ];

(* orbit within 2 years starting from aphelion *)
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In[  ]:= Show [p1, p2, p3]

Out[  ]=

Orbit of Halley 's Comet ,

in blue from t=0 to t=2 years starting from aphelion ,

AU about 150x106 km, the red focus is the sun

-15 -10 -5 5 10 15
AU

-4

-2

2
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AU

Finally  the  photography  of  Comet  1P/Halley  as  taken  March  8,  1986  by  W.  Liller,  Easter

Island,  part  of the International  Halley  Watch  (IHW)  Large  Scale  Phenomena  Network,  NSSD-

C’s Photo  Gallery,  NASA  ID LSPN-1725.

Out[  ]=

Further examples for Fourier series in linear differential equations can be found in the exercises and their

solutions in [1], chapter 5, and in [10].
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2.7 Solving  a 2D Poisson  Equation  for a Rectangular  Membrane  by a 

        Ritz-Galerkin  Solution  with  Trigonometric  Functions

In  this  section  we  use  Fourier  series  expansions  to  calculate  approximately  the  deformation  of  a  loaded

rectangular membrane with zero boundary conditions. 

In  the  example,  we  compute  a Ritz-Galerkin-Solution,  which  is  based  on  the  following  theoretical  set-

ting, where the task is understood as a variational  problem leading to a so-called weak solution. We start

with  the  formulation  in  terms  of  Hilbert  spaces  V,  i.e.,  complete  function  spaces  with  a  norm  ||f||  =

<f|f> 1/2,  <.|.> an inner product, f ϵ V. This formulation is also the starting point for the widely used Finite

Element  Method  (FEM),  on  which  we  learn  more  in  the  subsequent  volume  on  Fourier  Transforms  and

Distributions. For details see [1], chapter 9.

Equilibrium State of a Loaded Membrane 

Consider a bounded domain Ω  in the plane with a piecewise linear boundary δΩ , where an elastic mem-

brane is fixed . Under the influence of an external force acting perpendicular  to the plane, the membrane

deflects. The tension due to the fixing is isotropic, so it is described by a scalar quantity k (with the dimen-

sion N/m) . If f denotes the surface density of the force, then for small displacements u in the equilibrium

state it holds 

                                                                      -k Δ u = f  in Ω,  u =0 on  δΩ . 

                                                                      

Here, Δ denotes the Laplace operator . Thus, the equilibrium position is the solution of a Dirichlet bound-

ary value problem. The following considerations can also be translated to electrical potential problems or

stationary  heat  conduction  problems.  A  derivation  of  the  above  fact  from  Hooke'  s  law  can  be  found  in

works such as [5] R. Courant, D. Hilbert (1993) et al.
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If the boundary δΩ  has a complicated shape, it will not be possible to calculate a solution using the classi-

cal analytical  methods.  However,  a practical  solution approach is opened up by distributional  considera-

tions  .  The  equation  -k  Δ  u  =  f   is  interpreted  as  an  equation  between  distributions,  i  .  e  .,  one  seeks  a

function  u in a  suitable  Hilbert  space  V,  so that  -  using  Cartesian  coordinates  -  for  all  functions  v  in  V it

holds 

                                            -k <Δ  u,  v> = k ∫Ωgrad  u(x,y)  ·grad  v(x,y)  ⅆ(x,y)  = <f,v>.

                                            
The first equality follows from the definition of the generalized derivatives of u and v in V (cf .[1], p . 173) .

Since  one  now  has  to  solve  a  boundary  value  problem,  one  seeks  a  solution  u  that  is  regular  and  also

allows for speaking about boundary values u=0 on δΩ  . According to S. L. Sobolev (1908 - 1989), one seeks

the solution u among those functions v that are square - integrable along with their partial generalized

derivatives on Ω  and vanish on the boundary δΩ  . The set of all such functions v forms a function vector

space V over R, which is denoted as V = H0
1 (Ω).           

Even for complicated  domains whose boundary  has only minimal  regularity  properties,  this vector space

can  be  introduced  in  such  a  way  that  it  is  possible  to  meaningfully  speak  of  boundary  values  of  its  ele-

ments . This is assumed for Ω  and V in the following.  Two functions  in V are identified  if they differ  only

on a null set . The space V is an example of a function vector space called a Sobolev space. More generally,

Sobolev  spaces  are  vector  spaces  of  regular  distributions  whose  partial  derivatives  up  to  a  certain  order

are also regular.  Details  about  Sobolev  spaces  and their  applications  in partial  differential  equations  can

be  found,  for  example,  in  [6]  R.  Dautray,  J.  L.  Lions  (1992).  The  needed  properties  of  V  =  H0
1  (Ω)  in  the

following  are  to  be  found  in  Appendix  B  of  [1].  The  basis  for  statements  on  the  solvability  of  the  given

problem and also for the construction of numerical approximate solutions in V using later on (see [1] or a

subsequent  volume  of  this  booklet)  the  Finite  Element  Method  is  then  the  following  formulation  of  the

problem:

        

Formulation  of the problem  in the Sobolev  space  V
The force density f is assumed to be square - integrable on Ω , and V is the above described Sobolev space.

Here, in the example we consider a rectangular domain Ω . We seek a function u in V, such that for all v in

V the following holds: 

  a(u,v)  = l(v)

 a(u,v)  = k ∫Ωgrad  u(x,y)  ·grad  v(x,y)  ⅆ(x,y)=  k ∫Ω( ∂
∂x

u 
∂
∂x

 v + 
∂
∂y

u 
∂
∂y

v ) ⅆ(x,y)

       l(v)  = <f,v>   =  ∫Ω f(x,y) v(x,y)  ⅆ(x,y)

              

Due to the assumptions,  a(u,v)and l(v) are well-defined for all u, v in V. The derivatives involved are to be

understood as generalized derivatives. The boundary condition is included in the problem formulation by

seeking  the  solution  u in  the  vector  space  V,  whose  elements  are  functions  that  vanish  on the  boundary

δΩ. 

The solution  u is–if  it  exists–to  be understood  as a distributional  solution  and is  also called  a weak  solu-

tion. 

Potential Energy and Energy Functional of the Membrane

The  current  task  is  closely  related  to  the  physical  consideration  that  the  equilibrium  state  of  the  mem-

brane  adjusts  so  that  the  total  potential  energy  is  minimal.  Assuming  a  linear  elastic  material  behavior

according to Hooke' s law, the deformation energy is proportional to the change in area. 

The total potential energy E(v) of the membrane is then given for a displacement v by
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              E(v)  =  k ( ∫Ω(1+|grad  v(x,y) 2) 1/2ⅆ(x,y)  - ∫Ωⅆ(x,y))  - ∫Ω f(x,y)  v(x,y)  ⅆ(x,y)

For small displacements, one obtains with

                                          (1+|grad  v(x,y) 2) 1/2 - 1 ≈ 
1
2

|grad  v(x,y) 2

the approximation 

                                           E(v)  ≈ J(v)  =  
1
2

a(v,v)  -l(v).  

The functional J is called the energy functional of the membrane . If there is a function u for which J(u) is

minimal,  then u approximately  describes  the equilibrium  position  of  the membrane.   The connection  of

the posed  boundary  value  problem  with the variational  problem  of  minimizing  the functional  J  is  estab-

lished by the following version of a theorem by P. Lax and A. Milgram (see, for example,  [6] R. Dautray, J.

L. Lions (1992)). The theorem shows that both problems have a common solution in the Sobolev space V.

Theorem of Lax - Milgram 

1. For a function u in V, the equation a(u,v)=l(v) holds for all v in V if and only if  J(u) = inf { J(v) | v ϵ V }, i.e .,

if u minimizes the energy functional J. 

2.  Under  the  given  conditions  the  energy  functional  J  is  bounded  below  on  V,  and  there  is  a  uniquely

determined  function  u in V that  minimizes  J.  This  function  u is  thus also the desired  distributional  solu-

tion of the given boundary value problem.

      

This result teaches us that not only our exemplary problem, but also other problems of the same type can

be solved in the same way. 

Many boundary value problems can be formulated such that one seeks a function u in a function space V

adapted  to  the  respective  task,  so  that  an equation  of  the  form  a(u,v)=l(v)  holds  for  all  v  in  V.  The  state-

ments of the theorem then also apply to all such problems for which the essential properties of the vector

space V and for the (problem-dependent) functionals a and l are satisfied.

    

The Ritz-Galerkin Method

With the work done so far,  we have learned  how to formulate  our boundary  value problems,  and that its

(weak)  solution  is to be sought  in a vector  space V that  has the inner product  a(u,v)  for u,  v in V and the

energy  norm ||u||a= a(u, u) .  This  now makes  it  easy to describe  the basics  of  approximation  methods

according to Ritz and Galerkin and later as a special case the finite element principle.

In  all  vector  spaces  V  where  a  norm  ||f||  of  elements  f  ϵ  V  is  given  by  an  inner  product,  one  obtains  an

approximation in a subspace U of V by orthogonal projection of f onto U. The concept of orthogonality  is

directly  related  to the inner  product:  f,  g  from V are  orthogonal  if  and only  if  their  inner  product  is  zero.

The orthogonal  projection fU  of f onto U is an optimal approximation  for f ϵ  V by an element of U in the

following sense:

       

                || f - fU || = inf { || f - g || : g ϵ U}

i.e., the norm of the error  || f - g|| is minimal among all g ϵ U for g = fU  .

The  exemplary  problem  now  has  an  (unknown)  solution  u  in  the  infinitely-dimensional  function  vector

space V. In this vector space V, the bilinear form a(u,v)  belonging to the problem defines an inner product

and  the  norm   ||.||a  for  all  u,  v  ϵ  V.  According  to  Ritz-Galerkin,  one  constructs  a  finite-dimensional  sub-

space  of VN of V and calculates the orthogonal projection uN  of u onto VN  with the inner product given

by a(u,v)  as  an approximation  for  the  sought  solution  of  the  posed  boundary  value  problem.  Even  if  the
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function  u  remains  unknown,  its  orthogonal  projection  uN  can  be  determined  from  the  specification  of

VN  and  from  the  equation  a(u,v)=l(v)  valid  for  every  v  ϵ  V.  The  function  uN  is  called  the  Ritz-Galerkin

solution belonging to VN . The choice of VN  and hence how well a function u ϵ V can be approximated by

functions from VN  is crucial for the error || u - uN  ||a of the approximation.

To  achieve  satisfactory  numerical  results,  the  specification  of  the  subspace VN  and  its  approximation

properties is the key to the construction of approximate solutions.

The Linear System of Equations for a Ritz-Galerkin Solution

By specifying N linearly independent  functions v1  , v2  ,  .  .  .  , vN  in V , a basis of an N -dimensional  sub-

space VN  of V is determined. The space VN  is the set of all linear combinations of the vk  , 1 ≤  k ≤  N. Thus,

the Ritz-Galerkin solution uN  in VN  has a representation of the form 

                                                                       uN  = ∑k=1
N uN ,kvk

with  uniquely  determined  real  coefficients  uN ,k .  The  orthogonality  relations  a(u-uN  ,  vi  )  =  0  and  the

equations a(u, vi  )= l( vi) yield a(uN  , vi  ) = l( vi)  for 1 ≤ i ≤ N.

With  the  linearity  of  the  bilinear  form  a  and  the  above  representation  of   uN  ,  one  obtains  the  linear

system of equations

                                                                    ∑k=1
N uN ,k  a(vk ,vi) = l( vi)

for the sought coefficients uN ,1, . . . , uN ,N  . In matrix form, with column vectors u and l, the task is thus

Task. Determine u ϵ ℝN  , so that Au = l is satisfied for

         

            A = (αi,k) ,  αi,k  = a(vk ,vi) ,

             l = (li) ,       li  = l( vi)  for 1 ≤ i ≤ N, 1≤ k ≤ N

The  quantities  αi,k  and  li  can  be  calculated  from  the  given  functionals  a  and  l  and  the  chosen  basis

functions vi  . The matrix A is symmetric and positive definite, particularly regular (cf. [1] for details). 

In elasticity problems, A is called the stiffness matrix. The uniquely determined solution u  = (uN ,1  , . . . ,

uN ,N )  of  the  system  of  equations  yields  the  desired  approximate  solution  uN  of  the  original  problem

a(u,v) = l(v) for elements v in V .

Example 11. A Ritz-Galerkin Solution with Trigonometric Function

We compute  with Mathematica  the Ritz-Galerkin  solution  in the described  Sobolev  space V = H0
1  (Ω) for

the Dirichlet problem on the rectangle Ω = ]0,L[ x ]0,L[.

As basis for a 4-dimensional subspace V4 of V we choose the trigonometric functions 

v1(x,y)  = L sin(πx/L)sin(πy/L),  v2(x,y)  = L sin(3πx/L)sin( πy/L),

                 v3(x,y)  = L sin(πx/L)sin(3πy/L),     v4(x,y)  = L sin(3πx/L)sin(3πy/L).  
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We calculate the solution of the linear equation system. We need only the diagonal elements of the matrix

A, because all off-diagonal elements are zero.             

In[  ]:= v1 = L Sin[π x / L] Sin[π y / L]; v2 = L Sin[3 π x / L] Sin[π y / L];

v3 = L Sin[π x / L] Sin[3 π y / L]; v4 = L Sin[3 π x / L] Sin[3 π y / L];

a11 = k Integrate [Grad[v1, {x, y}].Grad[v1, {x, y}], {x, 0, L}, {y, 0, L}]

a22 = k Integrate [Grad[v2, {x, y}].Grad[v2, {x, y}], {x, 0, L}, {y, 0, L}]

a33 = k Integrate [Grad[v3, {x, y}].Grad[v3, {x, y}], {x, 0, L}, {y, 0, L}]

a44 = k Integrate [Grad[v4, {x, y}].Grad[v4, {x, y}], {x, 0, L}, {y, 0, L}]

Out[  ]= π2

Out[  ]= 5 π2

Out[  ]= 5 π2

Out[  ]= 9 π2

In[  ]:= l1 = f Integrate [v1, {x, 0, L}, {y, 0, L}]

l2 = f Integrate [v2, {x, 0, L}, {y, 0, L}]

l3 = f Integrate [v3, {x, 0, L}, {y, 0, L}]

l4 = f Integrate [v4, {x, 0, L}, {y, 0, L}]

Out[  ]=

4

π2

Out[  ]=

4

3 π2

Out[  ]=

4

3 π2

Out[  ]=

4

9 π2

We  set  L  =  1m,  f  =  1  N/m2,  k  =  2  N/m  and  obtain  the  Ritz-Galerkin  solution  u4  of  the  given  Dirichlet

boundary value problem, and compute the deflection at the point (L/2,L/2):

In[  ]:= L = 1; f = 1; k = 2;

u4[x_, y_] = l1 / a11 v1 + l2 / a22 v2 + l3 / a33 v3 + l4 / a44 v4

Out[  ]=

4 Sin[π x] Sin[π y]

π4
+

4 Sin[3 π x] Sin[π y]

15 π4
+

4 Sin[π x] Sin[3 π y]

15 π4
+

4 Sin[3 π x] Sin[3 π y]

81 π4

In[  ]:= u4[L / 2., L / 2.] (* deflection at {L/2,L/2} in m *)

Out[  ]= 0.0360957

We can finally illustrate this weak solution by a 3D-Plot.
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In[  ]:= Plot3D [u4[x, y], {x, 0, 1}, {y, 0, 1}, PlotRange → All,

Mesh → None , ColorFunction → "DeepSeaColors "]

Out[  ]=

Since  Mathematica  has  numerical  methods  implemented,  we  can  compare  our  Ritz-Galerkin  solution

with such an implemented method.

We define the given Dirichlet  problem with the boundary  condition and let Mathematica  solve the prob-

lem numerically.  

In[  ]:= Ω = ImplicitRegion [0 < x < L ∧ 0 < y < L, {{x, 0, L}, {y, 0, L}}];

In[  ]:= ImplicitRegion [0 < x < 1 && 0 < y < 1 && 0 ≤ x ≤ 1 && 0 ≤ y ≤ 1, {x, y}];

In[  ]:= op = -k Laplacian [solu[x, y], {x, y}] - f ;

In[  ]:= Γ = {DirichletCondition [solu[x, y] ⩵ 0, True]};

In[  ]:= DirichletCondition [solu [x, y] ⩵ 0, True ];

In[  ]:= solution = NDSolveValue [{op ⩵ 0, Γ}, solu, {x, y} ∈ Ω]

Out[  ]= InterpolatingFunction  Domain: 4.19×10-31 , 1., 4.19×10-31 , 1.
Output: scalar


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In[  ]:= Plot3D [solution [x, y], {x, y} ∈ Ω, PlotLegends → Automatic ]

Out[  ]=

We finally check the difference between the numerical Mathematica solution and our above Ritz-Galerkin

solution with only 4 trigonometric functions in the approximation. It is of order 10-4. 

In[  ]:= solution [L / 2, L / 2]

Out[  ]= 0.0368355

Plot3D 

solution [x, y] -
4 Sin[π x] Sin[π y]

π4
+

4 Sin[3 π x] Sin[π y]

15 π4
+

4 Sin[π x] Sin[3 π y]

15 π4
+

4 Sin[3 π x] Sin[3 π y]

81 π4
, {x, y} ∈ Ω, PlotLegends → Automatic 
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Below we see some pictures of great mathematicians, who have contributed essential

parts to Fourier Analysis within the last 250 years. 

© All pictures from Wikimedia Commons, in the public domain everywhere.

                  Daniel  Bernoulli  (1700  - 1782)              Jean Baptiste  Fourier  (1768  - 1830)

                  Peter  G. L. Dirichlet  (1805  - 1859)         Bernhard  Riemann  (1826  - 1866)  
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3 Discrete  Fourier  Transforms

In this chapter  some  fundamental  properties  of the discrete  Fourier  transform  (DFT)

are explored  and applied  in examples.  

Important  aspects  are connected  with the alias  effect.  This  appears  to beginners  at 

first as a limitation  for applications  of the DFT,  but has in fact a huge  advantage  when  

it comes  to modern  signal  transmission  in high frequency  bands  above  the clock  rates  

of digital  devices  like mobile  phones  etc.  There,  it allows  cheap  processing  without  

costly  hardware  by simply  subsampling. We will  point  out this in the following  (see 

examples  4 and 5 in 3.1 below).  

3.1  Fundamentals  on  the  DFT

In the following,  we use the DFT and the DCT in the form  as in my textbook  [1], i. e., 

an N-point  DFT has the prefactor  1/N . The DFT coefficient  Ck for a piecewise  continu -

ously  differentiable  f on [0,T[  is defined  by 

Ck= 
1

N
∑n=0

N-1 yne-ⅈkn2π/N  with yn=f(nT/N).  Thus  we use the prefactor  1/N here.  Other -

wise you would  not get the correct  amplitudes  of a signal.  

This prefactor  is set in Mathematica  with the option  FourierParameters->{-1,-1}.  The 

DFT is already  implemented  in Mathematica  with an FFT algorithm  (Fast  Fourier  

Transform).  We consider  a first  example:   

DFT and Frequency  Assignment,  Handling  of Alias  Effects

One of the main  effects  in a DFT is the alias  effect,  i . e . that in an N - point  DFT,  

circular  frequencies  of the form  (k + mN)ω0 in the observed  signal  cannot  be distin -

guished  (ω0=2 /T, T observation  time,  m ϵ ℤ).

Example  1. We consider  a DFT for f[t] = Sin[8  π t] +  Sin[28  π t] with  T = 1 s and N = 10 

and plot an interpolating  polygonal  train  between  the absolute  values  of the obtained  

DFT coefficients  . In the Mathematica  numbering,  the coefficient  with the number  n 

belongs  to the DFT coefficient  with  the number  n - 1, if we refer  to my notation  in[1]  . 

Here,  the coefficients  with  the numbers  4 and 8 are close  to zero.  They  are due to 

numerical  rounding  errors  and should  be exactly  zero.  The values  1 for the numbers  5 

and 7 deceive  due to the alias  effect,  and fake a single  oscillation  of 4 Hz with an ampli -

tude of 2.

In[  ]:= p1 = Plot[{Sin[8. Pi t], Sin[28. Pi t]}, {t, 0, 1}, ImageSize → Medium ];

tab = N[Table [{n / 10, Sin[8. Pi n / 10.]}, {n, 0, 9}]];

p2 = ListPlot [tab, PlotStyle → PointSize [0.03]];

pa = Show [p1, p2];

In[  ]:= exmpl1 = Table [Sin[8 π n / 10] + Sin[28 π n / 10], {n, 0, 9}];

Abs[Fourier [exmpl1 , FourierParameters → {-1, -1}]];



In[  ]:= p3 = ListLinePlot [%, PlotStyle → Directive [Blue, Thickness [0.008 ]],

PlotLegends → {"DFT with T=1,N=10"}];

GraphicsRow [{pa, p3}]

Out[  ]=

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

DFT with T=1,N=10

You cannot  distinguish  the two oscillations  at the sampling  points  

The oscillations  with 4 Hz and with 14 Hz cannot  be distinguished  in this DFT,  their  

amplitudes  add up there  due to the "undersampling". The symmetry  of the DFT 

spectrum  can also be explained  by the alias  effect  (see[1],  6.1).  In the example,  a list of 

sampled  values  is generated,  which  is subjected  to an FFT using  the Mathematica  

command  Fourier  to perform  an FFT.  We then plotted  a representation  of the DFT 

magnitude  spectrum.  A polygonal  line is displayed  with ListLinePlot,  which  connects  

the magnitudes  of the spectral  values.  

This fact  is called  the Alias  Effect

Given  a continuous,  piecewise  continuously  differentiable  signal  f on [0,T[  with the 

the limit  f(T-)  for t->T and a T-periodic  extension  fp the formula  for the alias  effect  is

                         Ck(f) = ∑m=-∞
+∞ ck+mN (fp) +

1

2 N
(fp (0) - fp (T -)). (***)

Here Ck(f ) is the k-th DFT coefficient  of an N-point  DFT of the analyzed  signal  f, while  

ck+mN  fp are the Fourier  coefficients  of the chosen  T-periodic  extension  fp of  f (see [1], 

6.1).  

To achieve  an unambiguous  frequency  assignment  in frequency  bands  of the form  

[mN/(2  T), (m + 1) N/(2  T)] bandpass  filters  are used  in signal  processing,  which  for 

the selected  integer  m ≥0 only  allow  signal  components  in the desired  frequency  

band  to pass  (cf. [1], 6.1).  

The sampling  frequency  to cover  a frequency  band  of width  N/(2T)  without  aliasing  

must  be at least  N/T.  If this condition  is fulfilled,  the DFT coefficient  Ck(f ) can be used  

as estimate  for the Fourier  coefficient  ck  fp with frequency  k/T.  Otherwise  we have  

aliasing.  
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Example  2. We test a signal  composed  with frequencies  40 Hz, 216 Hz and 296 Hz 

with a 512-point  DFT and T=4.  Since  this DFT covers  only  64 Hz as bandwidth  N/(2T),  

we are faced  with aliasing:  The 216 Hz and 296 Hz oscillations  are aliased  with the 40 

Hz oscillation,  all amplitudes  are added  in the DFT coefficients  C160 and C352 (my num-

bering  = Mathematica  number  -1).  The DFT coefficient  C352 represents  the Fourier  

coefficient  C-160 of cos(2π  40t)=cos(ω  T 40 t)=cos(π/2  160 t) with ω=2π/T.  

In[  ]:= T = 4;

NN = 512;

f[t_] = Cos[2 π 40 t] + 2 Cos[2 π 216 t] + 2 Cos[2 Pi 296 t];

exmpl2 = Table [f[n T /NN], {n, 0, 511}];

absdft = Abs[Fourier [exmpl2 , FourierParameters → {-1, -1}]];

ListLinePlot [absdft , PlotStyle → Directive [Blue, Thickness [0.005 ]],

PlotLegends → {"DFT of cos(2π 40t)

with T=4,N=512"}]

absdft〚161〛
absdft〚353〛
1 / 4 Integrate [f[t] Exp[- I 160 Pi / 2 t], {t, 0, 4}] (* with period T=4 as in the DFT,

the Fourier coefficient c160 of the 40 Hz oscillation *)

Out[  ]=

100 200 300 400 500

0.5

1.0

1.5

2.0

2.5

DFT of cos(2π 40t)

with T=4,N=512

Out[  ]= 2.5

Out[  ]= 2.5

Out[  ]=

1

2

Example  3. What  are the non-zero  DFT coefficients  for the 8 Hz oscillation  

2 cos(16πt),  when  you make  a DFT with T=4s,  N=20  samples?

Answer:  2 cos(16πt)=2  cos(32  ω0 t) with  ω0=2π/T=π/2. Then  32-N=12  and -32+2N=8  

yield  the according  non-zero  DFT coefficients  C8=ⅈ and C12=-ⅈ. 
This gives  a 8/T=2  Hz oscillation  -2sin(  8ω0t) with  phase  reversal  as alias  due to under-

sampling. The base  band  covered  by this DFT is only  [-2.5  Hz, 2.5 Hz].

The examples  so far show  the difficulty  in analyzing  unknown  signals  with  a DFT 

without  further  knowledge  on their  bandwidth.  We now show  that the alias  effect  on 

the other  hand  has enormous  advantages  for processing  of signals  in a very  high 

frequency  range.
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Example  4. For EMC  radiation  measurements  in the GHz range,  you simply  avoid  

sampling  rates  of several  gigasamples  per second  by using  bandpass  filters.  

For example,  bandpass  filters  with  a bandwidth  of 1 MHz  in subbands  are available  

as analog  circuits  to achieve  the filtering  in advance  to a DFT.     

Then,  with  only  a 512 - point  DFT and an observation  time of T=0.2  ms per frequency  

band,  i . e . approximately  2.5 MHz  sampling  frequency  N/T,  you achieve  a frequency  

resolution  1/T of about  5 kHz.  The analysis  of the subbands in a measurement  lab can 

then be put together  to form  an overall  picture  ("Undersampling Solution  for High  

Frequency  FFT Analysis").  This  saves  a lot of time and costs  for such  radiation  mea-

surements.  

We look at the DFT magnitude  spectrum  of such  an example  in a single  subband of 

width  1 MHz,  which  shows  that the alias  effect  must  be carefully  considered  when  to 

make  statements  with correct  frequency  assignments.   

It is assumed  that the signal  is in the frequency  band  [1GHz,  1GHz  + 1MHz],  e.g.  

generated  at the output  of a corresponding  bandpass  filter.  

In[  ]:= T = 0.2 × 10 ^ (-3);

NN = 512; (* T observation time, NN number of samples

(NN instead of N here, since N is protected by Mathematica ) *)

expml2 = Table [Cos[2 Pi (10 ^ 9 + 5000) n T /NN] +

4 Cos[2 Pi (10 ^ 9 + 25 000 ) n T /NN], {n, 0, 511}];(* high frequency signal *)

We are therefore  looking  at the superposition  of two high - frequency  oscillations  in 

the GHz range.   We then plot the entire  DFT magnitude  spectrum  as a polygonal  

curve  as well  as the relevant  parts  of it and see how the frequency  assignment  in the 

example  has to be done.  We have  taken  only  512 samples  of the signal  in the time 

T = 0.2 ms.
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In[  ]:= absdft = Abs[Fourier [expml2 , FourierParameters → {-1, -1}]];

p1 = ListLinePlot %, PlotRange → All, PlotStyle →
Directive [Blue, Thickness [0.008 ]], PlotLegends → Placed "T=0.2 10-3,

N=512", Above ;
list1 = Table [absdft〚n〛, {n, 181, 200}]; (* Extraction of part of the DFT list*)

list2 = Table [absdft〚n〛, {n, 321, 340}];

p2 = ListLinePlot [list1, PlotStyle → Directive [Blue, Thickness [0.008 ]],

PlotRange → All, DataRange → {181, 200},

Axes → {True, False }, PlotLegends → Placed [{"DFT

section "}, Above ]];

p3 = ListLinePlot [list2, PlotStyle → Directive [Blue, Thickness [0.008 ]],

PlotRange → All, DataRange → {321, 340},

Axes → {True, False }, PlotLegends → Placed [{"DFT

section "}, Above ]];

Show [p1]

Show [p2]

Show [p3]

Out[  ]=

T=0.2 10-3,

N=512

100 200 300 400 500

0.5
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Out[  ]=

DFT

section

185 190 195 200

Out[  ]=

DFT

section

325 330 335 340

Frequency  assignment:  The two "peaks"  of height  2 belong  to the oscillation  with 

frequency  10^9 + 25000  Hz and amplitude  4. 

In Mathematica,  compared  to the notation  in[1]  they have  a number  increased  by 1. 

The peaks  with numbers  188 and 326 therefore  belong  - this is where  the alias  effect  

comes  into play - to 4 Cos[2  π (10^9  + 25000)  t] = 4 Cos[(325  + 390*N)ω0t] with  ω0 = 2 

π/T = 2 π*5*10^3 rad/s,  T = 0.2*10^(-3)s  observation  time as above,  because  187 = -325 

+ 512 and (325 + 390*512)*5*(10^3)  = 1000025000.  The peak  with the number  188 in 

Mathematica  then belongs  as an alias  to the oscillation  component  

2 Exp[-I  (325 + 390 N) ω0t] = 2 Exp[+I  (187 - 391 N) ω0t] in the Fourier  series  of the T - 

periodically  extended  signal.  

In the same  way,  you can assign  the other  oscillation  frequency  corresponding  to the 

two peaks  with the numbers  192 and 322 and the height  1/2.  Please  carry  out the

small  analog  calculation  yourself.  In particular,  we note  that the values  associated  

with the positive  signal  frequencies  with the numbers  322 and 326 lie in the upper  half  

of the DFT spectrum,  while  those  with the numbers  188 and 192 are "alias  values"  of 

parts  with negative  frequencies.  
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The alias  effect  therefore  sometimes  requires  a little  thought  in order  to assign  the 

DFT line spectra  to the correct  frequencies.  However,  if necessary,  you can write  a 

small  program  for this.  

Exercise: Consider  (with  pencil  and paper  if necessary)  which  numbers  have  the 

peaks  of a 512-point  DFT with Mathematica  for an observation  time T=0.2*10^(-3)  s of 

an oscillation  with the frequency  1001.06  MHz?

Example  5. (Subsampling in digital  transmission  systems)   A decisive  advantage  of 

the alias  effect  with  a DFT  is found  in any kind of digital  transmission  (WLAN,  mobile  

phones,  DVB etc.).  The point  is that the transmissions  take place  in very  high fre-

quency  bands  outside  the bandwidth  of the used  digital  devices  like phones  et al. 

Since  the transmission  bands  are known  at the receiver  side,  the signals  are accord -

ingly  undersampled, what  automatically  can generate  the signal  spectrum  in a lower  

frequency  band  by aliasing.  For example,  5G transmissions  can use frequency  bands  

up to 26 GHz,  while  mobile  phones  at present  have  2.2-2.6  GHz CPU’s.  For the digital  

signal  processing  direct  IF subsampling receivers  (IF, intermediate  frequency)  can be 

used to shift  the signal  spectrum  without  analog  mixers  by the alias  effect  from  a 

high to a low frequency  band,  where  the phone  signal  processing  works.  This  reduces  

considerably  receiver  complexity,  power  consumption  and costs  of hardware.  

We have  seen that the bandwidth  of a segment  of a signal  spectrum  by a DFT is deter -

mined  by N and T , and thus a segment  of the spectrum  is representable  by a DFT 

without  aliasing.  Not a priori  determined  is the position  of such  a spectral  part  on the 

frequency  axis.  Its position  can be determined  from  a priori  knowledge  or deliber -

ately.  This  has disadvantages  in observing  unknown  signals,  but also enormous  advan -

tages  in signal  processing  for technical  systems  as for example  in communications  

engineering.  Because  there  the signals  and the allocation  of signal  frequencies  in the 

spectrum  can be chosen  intentionally.  Thus,  the DFT with subsampling offers  the 

opportunity  to bring  a signal  spectrum  automatically  into a frequency  band  where  

device  processing  works.  This  is one of the reasons,  why digital  transmission  nowa -

days is so successful  and cheap,  because  otherwise  with analog  technique  you would  

need expensive  mixers  to achieve  the same  by amplitude  modulations.  Modern  digi-

tal transmission  with multi-carrier  methods  like OFDM  transmission  in high fre-

quency  bands  the information  in spectra  of trigonometric  polynomials,  which  can be 

reconstructed  with a DFT by aliasing  in a desired  lower  frequency  band.  This is a 

cornerstone  in modern  communication  systems.  We can see more  on this in [1], 12.3 

or in a later  booklet  on Fourier  transforms  and the principle  of OFDM  transmissions  

with Mathematica.   
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Example  6. (Gain  in Computational  Effort  by Undersampling in the Radio-Fre -

quency  Band)  

Assume  we have  signals  in the radio-frequency  band  FM from  87.5 MHz  to 108 MHz,  

which  shall  be digitally  processed.  Sampling  with 216 MHz  according  to the Nyquist  

frequency  would  require  an anti-alias  lowpass  filter  with  cutoff  frequency  108 MHz,  

and yield  a data stream  of 2x216=432  MB/s  from  a 16 Bit ADC to the signal  processing  

unit.  Undersampling with sampling  frequency  fs=43.5  MHz  shifts  the signal  spectrum  

to [0.5 MHz,  21 MHz].  This  would  result  in a data stream  of only  87 MB/s  for further  

signal  processing,  which  is a gain of about  80% in computation  time,  compared  to 432 

MB/s,  without  the need  of a (costly)  analogue  mixer.

Example  7. (Delayed  Sampling,  Correction  in the Spectrum  of Trigonometric  Poly -

nomials)  

We consider  a sampling  of 

                       f(t)=2  Exp[ⅈω0t]+(1+ⅈ)Exp[2ⅈω0t]+(1-ⅈ)Exp[3ⅈω0t] with  T=1s,  ω0=2π/T. 

Assume  that the sampling  times  are tn=nT/N+0.1s  with N=4 and n=0,...,N-1.

Then the DFT spectrum  undergoes  changes,  compared  to a corresponding  one begin -

ning at t=0.   

The DFT spectrum  of the delayed  sampling  with the "synchronization  error"  Δt =0.1s  

is 

                       (0, 1.6180  + 1.1755  ⅈ, -0.6420  + 1.2600  ⅈ, 0.6420  + 1.2600  ⅈ). 

Since  f is a T-periodic  trigonometric  polynomial  with  frequencies  only  in the pass-

band  [0,N/T[,  the DFT coefficients  Ck of f are simply  phase-shifted  towards  Dk = Ck  

zk , z=Exp[ⅈω0Δt }, due to the delayed  sampling.  

The spectrum  can be corrected  using  known  pilots.  

If the amplitude  A of a "pilot  carrier"  in a transmitted  trigonometric  polynomial  is 

known  (here  for example  A=2 for the carrier  frequency  1 Hz),  one can recognize  the 

phase  shifts  from  the obtained  DFT coefficient  of this carrier  and correct  the entire  

DFT spectrum.  In the example,  the products  Dkz-kwith z=D1/A, k=0,...,3  yield  the 

true spectrum  (0,2,1+ⅈ,1-ⅈ)  of f in the frequency  band  up to 3 Hz (see below).

In[  ]:= ω0 = 2 π; A = 2;

expml7 = Table [A Exp[ⅈ ω0 (n / 4 + 0.1)
+ (1 + ⅈ) Exp2 ⅈ ω0 (n / 4 + 0.1) + (1 - ⅈ) Exp3 ⅈ ω0 (n / 4 + 0.1], {n, 0, 3}];

dft = Fourier [expml7 , FourierParameters → {-1, -1}]

Out[  ]= -7.21645 × 10-16 + 7.77156 × 10-16 ⅈ,
1.61803 + 1.17557 ⅈ, -0.64204 + 1.26007 ⅈ, 0.64204 + 1.26007 ⅈ
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Now,  we correct  the spectrum  using  the pilot  carrier  as described  above:

In[  ]:= dftcorrected = Chop [Table [dft〚k〛× (dft〚2〛 / A)^ (-k + 1), {k, 1, 4}]]

(* Observe the index numbers of Mathematica *)

Out[  ]= {0, 2., 1. + 1. ⅈ, 1. - 1. ⅈ}
In[  ]:= DeltaT = Arg[dft〚2〛 / A] /ω0

Out[  ]= 0.1

Of course,  from  z=Exp[ⅈω0Δt } the time delay  Δt =arg(z)/ω0 is obtained  as above.  In a 

transmit-receive  scenario  with a delay  of received  signals,  where  the amplitudes  of 

transmitted  trigonometric  polynomials  represent  the encoded  information  in a suit-

ably chosen  frequency  band,  the use of known  amplitudes  on known  carriers  (prea -

mbles  and pilot  symbols)  is standard  in transmissions  such  as DAB,  DVB-T,  DSL,  

WLAN,  LTE,  5G. They  are used  for synchronization and generally  for channel  estima -

tion.   
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3.2  Application:  Estimation  of Signal  Spectra,  Aliasing

As can be seen from  the examples  above,  the DFT can be used  to estimate  spectra  of 

unknown  signals  if knowledge  of their  bandwidth  is available.  In general,”truncation  

effects”  happen  due to the time window  used  in the DFT (see[1]).  They  are caused,  

among  other  things,  by the uncertainty  principle  (see[1],  time-bandwidth  product).

We consider  signals  f on[0,T[,  which  are  continuous  with a limit  f(T-)  and having  a 

piecewise  continuously  differentiable  T-periodic  extension  on ℝ. If wT  denotes  the 

rectangular  window  (UnitStep[t]-UnitStep[t-T])  of duration  T, then,  due to the alias  

effect,  the DFT coefficient  Ck(f wT ) of an N-point  DFT for signals  f as above  compared  

with the coefficients  ck(f wT ) of the Fourier  series  representation  of f wT  is given  by

                          Ck(fwT ) = ∑m=-∞
+∞ ck+mN(fwT ) +

1
2 N

( f (0) - f (T -)).

Conclusion: If the T-periodic  continuation  of (f wT ) has a jump  point  at T or if f has 

oscillation  components  with a circular  frequency  ω≠2πk/T, kϵℤ, then distortions  

occur  in the DFT compared  to the true signal  spectrum  (see [1], 12.6).  The distortions  

are referred  to in the literature  as aliasing  and leakage.  Let us look at a simple  exam -

ple: 

Example  8. f1(t)=Cos[t]  has a discontinuous  T-periodic  continuation  for T=π . 

For the function  f2(t)=-Cos(t/2)+Cos(t)/2  the T-periodic  extension  of f2 · wT  is continu -

ous, f2 itself,  however,  is not T-periodic,  but 4π-periodic.  We first  look at sections  of 

the graphs  of f1 and f1 ·wT , extended  T-periodically,  and sections  of the graphs  of f2 

and the T-periodic  extension  of f2 · wT , each with the rectangular  window  wT , T=π .   

In[  ]:= T := Pi; f1[t_] := Cos[t]; wi[t_] := UnitStep [t] - UnitStep [t - T];

f2[t_] := -Cos[t / 2] + Cos[t] / 2; f1w[t_] := f1[t] × wi[t];

f2w[t_] := f2[t] × wi[t];

In[  ]:= p1 := Plot[f1[t] - 0.05, {t, 0, 2 T}, PlotRange → All, Frame → False ,

FrameStyle → Directive [Black , FontSize → 18, FontWeight → Plain ],

PlotLegends → {"f1-0.05"}, PlotStyle → {Blue, Thickness [0.008 ]}]

p2 := Plot[f1w[t] + f1w[t - T] + 0.02, {t, 0, 2 T}, PlotRange → All, Frame → False ,

FrameStyle → Directive [Black , FontSize → 14, FontWeight → Plain ],

PlotLegends → {"f1wT"}, PlotStyle → {Red, Thickness [0.008 ]}]

p12 = Show [{p1, p2}, ImageSize → Small ](* Shown with

offsets : Here the difference between f1 and the T-periodic extension of f1·wT *)

Out[  ]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

f1-0.05

f1wT
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In[  ]:= p3 := Plot[f2[t] - 0.05, {t, 0, 4 T}, PlotRange → All, Frame → False ,

FrameStyle → Directive [Black , FontSize → 18, FontWeight → Plain ],

PlotLegends → {"f2"}, PlotStyle → {Blue, Thickness [0.008 ]}]

p4 := Plot[f2w[t] + f2w[t - T] + f2w[t - 2 T] + f2w[t - 3 T] + 0.03,

{t, 0, 4 T}, PlotRange → All, Frame → False ,

FrameStyle → Directive [Black , FontSize → 14, FontWeight → Plain ],

PlotLegends → {"f2wT+0.03"}, PlotStyle → {Black , Thickness [0.01]}]

p34 = Show [p3, p4]

Out[  ]=

2 4 6 8 10 12

-0.5

0.5

1.0

1.5

f2

f2wT+0.03

Of course,  there  are large  differences  to be expected  between  the DFT spectra  and the 

true spectra  of the periodic  signals  observed  with a rectangular  window:  First,  the 

DFT magnitude  spectrum  of f1 calculated  with the rectangular  window  of duration  

T=2π  with  N=16  points.  DFT magnitude  spectrum  of f1: This  clearly  shows  the signal  

circuit  frequency  of 1 [rad/s].  It corresponds  to the peaks  at numbers  2 and 16 in the 

Mathematica  numbering.

In[  ]:= data1 = Table [N[f1[ 2 π n / 16]], {n, 16}];

absdft1 = Abs[Fourier [data1 , FourierParameters → {-1, -1}]];

plot1 = ListLinePlot [absdft1 , PlotRange → All,

PlotStyle → {Blue, Thickness [0.008 ]}, ImageSize → Small ,

PlotLegends → {"DFT of f1wT

T=2π,N=16"}];

The right  graphics  shows  a DFT of f1 with T = π , N = 32 sampling  points,  and thus the 

magnitude  spectrum  of f1·wT with the rectangular  window  . You can clearly  recognize  

the alias  effects,  which  suggest  oscillation  components  with angular  frequencies  ≠
1[rad/s],  if the DFT is used  naively  and the values  are taken  at face for signal  interpreta -

tion.   
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In[  ]:= data2 = Table [N[f1w[ Pi n / 32]], {n, 32}];

absdft2 = Abs[Fourier [data2 , FourierParameters → {-1, -1}]];

plot2 =

ListLinePlot [absdft2 , PlotRange → All, PlotStyle → {Blue, Thickness [0.008 ]},

ImageSize → Small , PlotLegends → {"DFT of f1wT

T=π,N=32"}] ;

GraphicsRow [{plot1, plot2 }]

Out[  ]=
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Now the corresponding  DFT representations  for f2 and f2wT , in the first  case  left with  

T=8π , i.e.,  twice  the exact  period  of f2, in the second  case right  with T=π , in each case 

with the rectangular  window  and N=16  points  for the DFT.   In the 2nd case,  the actual  

signal  spectrum  cannot  be estimated  correctly  (note,  for example,  the high “DC com-

ponent”  with the number  1, which  in fact is zero for f2). 

In[  ]:= data3 = Table [N[f2[ 8 Pi n / 16]], {n, 16}];

absdft3 = Abs[Fourier [data3 , FourierParameters → {-1, -1}]];

plot3 =

ListLinePlot [absdft3 , PlotRange → All, PlotStyle → {Blue, Thickness [0.008 ]},

ImageSize → Small , PlotLegends → {"DFT of f2wT

T=8π,N=16"}] ;

Let us repeat  which  frequencies  are represented  by the DFT peaks:  

The peak  with number  3 in Mathematica  corresponds  in my notation  above  to the 

DFT coefficient  C2. 

The corresponding  frequency  is k/T with k=2 and our used  T=8π , i.e.,  it belongs  to the 

frequency  ν  =1/(4π) of cos(t/2).  

Correspondingly,  the peak  with Mathematica  number  5 belongs  to the frequency  

ν =4/(8π)=1/(2π)  of cos(t).  

Both magnitudes  are halved  due to cos(t ) =
ⅇⅈt
2

+ 
ⅇ-ⅈt

2
. The peaks  in the upper  half  of 

the DFT spectrum  thus represent  the complex  Fourier  coefficients  C-2 and C-4 of the 

signal  f2, aliased  to the DFT coefficients C14 and C12 (in my notation).  

The same  example  with  T=π  is useless,  since  T is not large  enough  for the 4π-peri -

odic signal,  but shows  again  the problem  in analyzing  unknown  signals  with  a DFT:
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In[  ]:= data4 = Table [N[f2w[Pi n / 16]], {n, 16}];

absdft4 = Abs[Fourier [data4 , FourierParameters → {-1, -1}]];

plot4 =

ListLinePlot [absdft4 , PlotRange → All, PlotStyle → {Blue, Thickness [0.008 ]},

ImageSize → Small , PlotLegends → {"DFT of f2wT

T=π,N=16"}];

GraphicsColumn [{plot3, plot4 }]

Out[  ]=
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Equally  problematic  is the detection  of vibration  components  with closely  neighbor -

ing frequencies,  especially  if such  components  have  very different  amplitudes.  Small  

amplitude  values  next  to larger  amplitude  values  are obscured  by distortion  effects  of 

the DFT,  or if the observed  signal  is superimposed  by short  - term  disturbances.  See 

the examples  in[1]  and the relationship  between  the smoothness  properties  of the 

signal  on the one hand  and the decay  of the magnitude  spectrum  of periodic  func-

tions  on the other  hand.  In practice,  attempts  are made  to obtain  the best  possible  

spectral  estimates  by long observation  periods,  high sampling  frequencies  and a 

correspondingly  high number  of samples  and by using  weight  functions,  so-called  

time windows.  More  on this in the next  section.

We note:  An increase  in the observation  time (and thus an increase  in the number  of 

samples)  improves  the frequency  resolution  1/T,  an increase  in the sampling  fre-

quency  (again  with a corresponding  increase  in the number  of samples)  increases  the 

recorded  bandwidth.  Both  effects  counteract  distortions  caused  by aliasing  and leak-

age. A further  tool  for such  an improvement  is the use of use of weighting  functions  in 

the time domain.
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3.3 Leakage,  Time  Windows

In a DFT with,  for instance,  an even  number  N of samples  and a time window  wT  one 

uses the DFT coefficient  Ck for k=0,...,(N-2)/2  as an approximation  for the Fourier  

coefficient  ck   of fwT . For k=(N+2)/2,...,N-1  the coefficient Ck  serves  accordingly  as an 

approximation  for c-N+k  and CN /2 as an approximation  for (c-N /2+ cN /2)/2.  The corre -

sponding  oscillations  to the fundamental  circular  frequency  ω0=2π/T

v0(t)=1,  v1(t) =ⅇⅈ ω0 t  , ..., v(N-2)/2(t)= ⅇⅈ (N-2) ω0 t /2 , vN /2(t) =cos(Nω0t/2),

v(N+2)/2(t) =ⅇ-ⅈ (N-2) ω0 t /2 , ..., vN-1(t)=ⅇ-ⅈ ω0 t

generate  an N-dimensional  function  vector  space  V in L2([0,T]).  We have  seen that Ck  

contains  in sum all Fourier  coefficients  ck+mN of a T-periodic  extension  fp of fwT , 

m in ℤ.

For the rectangular  window  wT , the T-periodic  extension  of fwT  has discontinuities  at 

t=kT,  k in ℤ, if f(0)≠  f(T-).  

If the signal  f is a mixture  of harmonic  oscillations  with circular  frequencies  kω0, 

k=0,...,N/2,  i.e.,  if f(t)=∑k=0
N-1 αkvk(t) is a linear  combination  of the functions  v0,...,vN-1, 

then f(0)=f(T-)  and it follows  

                                                        Ck =< f | vk > = 
1

T
 ∫0

T
f[t] Conjugate [vk [t]] ⅆ t=αk .

The orthogonal  projections  of f onto  the one-dimensional  subspaces  of V generated  

by the functions  vk  then yield  with the DFT coefficients  the exact  spectral  values  of f. 

That is different,  if the periodic  extension  of fwT  has a jump  discontinuity  at t=T or if 

the originally  observed  signal  f contains  harmonic  oscillations,  whose  period  duration  

does not match  T. In practice,  this will  often  be the case when  analyzing  unknown  

signals  f, which  are sampled  over  an arbitrarily  chosen  time period.  Simple  examples  

of such  cases  are given  by the functions  f1(t)=cos(t)  and f2(t)=-cos(t/2)+cos(t)/2,  as we 

have seen above  in the example  8. For T=π , the T-periodic  extension  of f1wT  with  the 

rectangle  window  wT  has a jump  discontinuity  at T, while  that of f2wT  is continuous,  

but f2 is not T-periodic.    

If fwT (0)≠  fwT (T-),  then every  T-periodic  extension,  T=NΔt , of f beyond  the interval  

[0,T_a],  T_a=(N-1) Δt , has jump  discontinuities  or steep  flanks  in the vicinities  of the 

points  kT, k in ℤ. From  considerations  on the asymptotics  of Fourier  coefficients  (cf. 

[1]),  it follows  that the magnitudes  of the coefficients  ck  of a T-periodic  extension  of 

the signal  section  decrease  only  slowly  for |k|⟶∞.  Consequences  are aliasing  effects  

in the coefficients  Ck  of the discrete  Fourier  transform.  Even  if by chance  fwT (0)= 

fwT (T-) as in the example  f2wT , effects  arise  as soon  as f contains  oscillation  compo -

nents  with  frequencies  ν≠k/T,  and also if they lie within  the Nyquist  interval  with  the 

cutoff  frequency  N/(2T).  Such  effects  are called  leakage  effects.

Every  signal  component  with a circular  frequency  ω1≠ 2πk/T for any k has non-zero  

projections  in all subspaces  of L2([0,T]),  which  are generated  by the functions  vk  for 

k=0,...,N-1,  and causes  leakage  effects:     

                                                      < ⅇ ⅈ ω1 t wT  | vk > ≠ 0  for all k=0,...,N-1.
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Example  9. Consider  for example  the signal  g(t) = A Exp[ⅈω1t]. Then,  for the k-th 

Fourier  coefficient  ck(gwT ) of  gwT  with  the rectangle  window  wT  for the interval  [0,T[  

it can be shown  (with  the Fourier  transforms  of gwT , see [1], 11.5 and 12.6)

                         ck (gwT ) = (-1)k  A Exp[ⅈω1t] sin(π  k-ω1T/2)/(π  k-ω1T/2)                                       

(***)

These  coefficients  distort  the amplitudes  and phases  of the estimates  Ck  of signal  

components  at all frequencies  k/T,  k⩽ N/2,  if ω1≠ 2πk/T. 

They contribute  as alias  effects  to all DFT coefficients  Ck . They  are spread  onto the 

oscillations  at all frequencies  k/T (see the next  figure).  This  phenomenon  is referred  

to in signal  processing  as the "spectral  leakage  effect".   Additionally,  for all Ck , there  is 

a constant  additive  component  (g(0)-g(T-))/(2N),  if the T-periodic  extension  of gwT  

has a jump  discontinuity  at T. 

The spectral  leakage  effect  occurs  with modified  coefficients  ck(gwT ) even  when  using  

other  window  functions  wT  instead  of the rectangular  window,  and it results  from  the 

uncertainty  principle  for the time-duration-bandwidth  product  of the window  wT  

(see [1], 12.4).

The arrows  in the following  figure  show  some  absolute  weights  gk=|ck(gwT )/A|,  

through  which  the amplitude  A of gwT  is distributed  onto the Fourier  coefficients  

belonging  to frequencies  2πk/T adjacent  to ω1 by the periodicity  induced  by wT  accord-

ing to (***)  above.  For the figure  the following  data  are used:  T=1,  i.e.,  ω0=2π , 

ω1=5π=15.708,  A=1.  Shown  is |( ℱwT )(ω-ω1)/T|,   ℱwT  the Fourier  transform  of wT (see 

[1], chapter  10).

Out[  ]=

Time  Windows

We observe  that a possibility  to mitigate  alias  and leakage  effects  is the use of win-

dows  wT whose  Fourier  transforms  decay  faster  than that of the rectangle  function.  

The faster  the decrease  of ℱwT(ω) for |ω|→∞  the better  is the frequency  localization  in 

fwT. This  is a consequence  of Heisenberg’s  uncertainty  principle  and properties  of 

Fourier  transforms.  These  facts  are explained  in detail  in a subsequent  booklet  on 

Fourier  transforms  with Mathematica  (see also [1], chapter  12). From  that,  it also a 

fact that the bandwidth  of a window  function  wT increases,  when  T becomes  smaller.  
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Thus,  with  decreasing  T again  the decay  of ℱwT becomes  slower  and thus increases  

aliasing  and leakage.  Therefore,  when  using  the discrete  Fourier  transform,  some  

fundamental  aspects  of the interaction  between  the observation  duration  T, the prop -

erties  of the weighting  function  wT, and the sampling  rate of the DFT must  be consid -

ered.  

In practice,  many  different  weighting  functions  wT are used.  The use of special  win-

dow functions  and thus the compromise  that must  always  be made  due to the uncer -

tainty  principle  depends  on the aim of the respective  application.  Criteria  besides  the 

decay  wT and the bandwidth  of the window  include,  for example,  its energy  concentra -

tion in a given  frequency  band  or simple  calculation  and implementation  possibilities  

in software  applications.  

General  aspects  for  choosing  a window:

1. One usually  chooses  a window  function  wT that  is as smooth  as possible  with sup-

port in [0, T] and wT(0)=wT(T)=0  or a little  bit wider.  Then,  with support  in [0,T],  the T 

-periodic  extension  of  fwT for continuous  signals  f has no jump  discontinuities,  and 

the aliasing  effects  described  above  are reduced,  if the Fourier  coefficients  of this 

extension  decrease  rapidly.  One then obtains  better  estimates  with  Ck T than with the 

rectangular  window  for the values  ℱ f (2πk/T), which  are often  sought  in applications.

2. One chooses  the observation  duration  T to be as long as possible.  The smaller  T is, 

the larger  the bandwidth  of ℱwT, i.e.,  the worse  the frequency  localization.

3. One chooses  the number  N of samples  to be as high as possible.  More  signal  fre-

quencies  are then resolved  exactly.  For fully  observed  time-limited  signals  f, "zero  

padding"  improves  the approximations  for ℱf .

4. The leakage  effect  is less significant,  the faster  the side lobes  of |ℱwT| decrease  

compared  to the main  lobe (cf. the preceding  image).  Therefore,  window  functions  

are often  chosen  where  these  side lobes  of |ℱwT| decrease  rapidly.

Example  10.  We consider  as an illustrative  example  the signal  f(t) = A cos(2  π ν1t) +B 

cos(2  π ν2t) with  A=1,  B=0.02,  ν1=10.25  Hz, ν2=12 Hz. 

The figure  left shows  the discrete  Fourier  transform  with the rectangular  window  wT , 

T= 2 s,  for N=128.  The signal  frequency  ν2 cannot  be detected.  With  the same  T and N, 

the often-used  Hann  window  wT is used  in the  middle  figure,

wT(t)= 0.5 - 0.5 cos(2πt/T)  for 0≤t≤T, and finally  the same  wT with  T=5 s and N=1024  

at the right.  Displayed  are single-sided  DFT magnitude  spectra.  

In[  ]:= f[t_] = Cos[2 Pi 10.25 t] + 0.02 Cos[2 Pi 12 t]

Out[  ]= Cos[64.4026 t] + 0.02 Cos[24 π t]
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In[  ]:= T = 2; NN = 128; list1 = Table [f[n T /NN], {n, 0, NN - 1}];

dft1 = Fourier [list1, FourierParameters → {-1, -1}];

list1a = Table [Abs[dft1〚k〛], {k, 1, 70}];

p1 = ListLinePlot [list1a , PlotRange → All, PlotLegends → Placed [{"T=2,N=128,

rectangle window "}, Above ]];

hann [t_] := 0.5 - 0.5 Cos[2 Pi t / T];

fwt[t_] := f[t] × hann [t];

list2 = Table [fwt[n T /NN], {n, 0, NN - 1}];

dft2 = Fourier [list2, FourierParameters → {-1, -1}];

list2a = Table [Abs[dft2〚k〛], {k, 1, 70}];

p2 = ListLinePlot [list2a , PlotRange → All, PlotLegends → Placed [{"T=2,N=128,

Hann window "}, Above ]];

T = 5;

NN = 1024;

list3 = Table [fwt[n T /NN], {n, 0, NN - 1}];

dft3 = Fourier [list3, FourierParameters → {-1, -1}];

list3a = Table [Abs[dft3〚k〛], {k, 1, 70}];

p3 = ListLinePlot [list3a , PlotRange → All, PlotLegends → Placed [{"T=2,N=1024,

Hann window "}, Above ]];

p4 = GraphicsRow [{p1, p2}];

GraphicsColumn [{p4, p3}]

Out[  ]=
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From  the DFT result  in the third  image,  the 12 Hz signal  frequency  can at least  be 

suspected.  Observe  also that the amplitudes  are diminished  by the use of the damp -

ing window  function.  
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3.4 Inverse  Discrete  Fourier  Transform  IDFT,  Interpolation  with  a DFT

   1. Inverse  Discrete  Fourier  Transform  IDFT

The DFT is invertible.  Its inverse  IDFT  is given  for N samples  and duration  T with the 

DFT coefficients  Ck  of a function  f by 

                     IDFT             yn=f(nT/N)=∑k=0
N-1 Ck Exp[ⅈkn2π/N]  for 0⩽n⩽N-1.  

For calculations  we have  the properties  of a DFT summarized  in the table  below,  

compared  with analog  properties  of Fourier  series.  This  table  is copied  from  [1], 

where  also the according  proofs  can be found.  The DFT coefficients  Ck  are denoted  by 

ck


 in the table  as in [1].

Out[  ]=
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2. Trigonometric Interpolation

By definition  of the DFT we immediately  obtain  trigonometric  interpolation  polynomi -

als for functions  f on an interval  [0,T]  with  interpolation  nodes  f(kT/N),  k=0,...,N-1.  

This means  that the IDFT  of the DFT list {Ck ,k=0,..N-1}  yields  the list of samples  

{yk=f(kT/N),  k=0,..,N-1},  whose  DFT is just {Ck , k=0,..N-1}.  Thus,  we obtain  from  the 

formula  for the IDFT  that Q(t)  yields  a trigonometric  interpolation  polynomial  with  

Q(t)=∑k=0
N-1 CkExp[ⅈ  k 2π t/T] for these  interpolation  nodes  yk . By the alias  relation,  this 

can be written  in another  form,  when  the samples  and the DFT coefficients  are N-

periodically  extended.  We consider  two cases:

1. The Number  of Samples  N=2m+1  is Odd

Then the function  

                                    P(t)=∑k=-m
m Ck Exp[ⅈ  k 2π t/T ] 

is the uniquely  determined  trigonometric  interpolation  polynomial  of degree  at most  

(N-1)/2.  If the samples  are real,  then P(t) is also real-valued.  In particular  P = f, if  the 

function  f is a T -periodic  trigonometric  polynomial  of degree  at most  m.

2. Trigonometric  Interpolation  with an Even  Number  of Samples

If N = 2m is even,  then the interpolation  problem  is not uniquely  solvable.  

The trigonometric  polynomial  P(t)=∑k=-m
m αkExp[ⅈ  k 2π t /T ] has N+1 coefficients.  The 

DFT yields  N coefficients  C0,...,CN-1. The function

                                 P1(t)=∑k=-m
m-1 Ck Exp[ⅈ  k 2π t/T]  

is an interpolation  function  for f, but in general  is not real-valued.  By the alias  rela-

tion,  we can obtain  as a second  interpolation

                               P2(t)=∑k=-m+1
m-1 Ck Exp[ⅈ  k 2π t/T]  + CN /2Cos[  m 2π t/T] . 

If the samples  are real-valued,  then P2 is also a real-valued  function.  It is the unique  

trigonometric  interpolation  polynomial  in the vector  space  Vm spanned  by 1, 

cos(kω0t), sin(kω0t) for k=1,  . . . , m-1,  and cos(mω0t), ω0=2π/T.  With  

ak = Ck + C-k = 2 Ck ,  bk = ⅈ (Ck - C-k) we can write  P2 in the form  

                           P2(t)=
a0

2
+ ∑k=1

m-1 akcos(ω0kt)+bksin(ω0kt)  +
am

2
cos(mω0t). 

If f can be extended  to a T -periodic  even  function,  then all coefficients  bk=0. If an odd 

T-periodic  extension  is possible,  then all ak=0.  

Example  11.  For N=4,  tn =nπ/2, T=2π  with  samples  y0=1, y1=2, y2=1 and y3=3 we com-

pute P2 as above  and obtain  P2(t)=7/4-1/2  sin(t)-3/4  cos(2t).  Also P(t)= P2(t)+α  sin(2t)  

with arbitrary  real  α is a trigonometric  interpolation  polynomial  of degree  2, since  

sin(2tn) always  is zero.  However,  such  a function  P is not in the space  V2 as defined  

above  for α≠0.

The given  interpolations  P1 and P2 are trigonometric  polynomials  in the baseband  to 

a DFT.  For bandpass  signals  f , trigonometric  interpolation  polynomials  in the corre -

sponding  passband  can also be given  with the help of a DFT and bandpass  sampling.  

In particular,  trigonometric  polynomials  in a passband  can be reconstructed  exactly  

with a DFT.  The formulation  of this is left to the readers.
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Example  12.  Interpolation  of Fourier  transforms  of time-limited  functions,  upsam-

pling by zero-padding.

The DFT is often  used  to obtain  approximations  for Fourier  transforms  ℱf  of gener -

ally non-periodic  functions  f . It makes  sense  to consider  time-limited  functions,  i.e.,  

functions  with bounded  support  (see below).  For such  functions  f, assumed  to be 

piecewise  continuously  differentiable  with support,  for example,  in [-T,T]  it holds  for 

samples  Fk  of their  Fourier  transform  at points  2πk/T and the Fourier  coefficients  ck  

of the T-periodic  extension  of f the relation  Fk=Tck  (see [1], 11.5).  Therefore,  we can 

use the DFT to approximately  compute  samples  of the Fourier  transform  of f , by 

which  we can approximately  illustrate  the Fourier  transform  through  interpolation.   

Enlarging  the sampling  duration  T by additionally  appending  zeros  to the samples  

(with  equal  sampling  frequency)  one can improve  with higher  frequency  resolution  

the approximation  for ℱf . Analogously,  zero-padding  in the frequency  range  yields  an 

upsampling of a time-signal  by an IDFT.  This  is widely  used  in the algorithms  of 

OFDM  transmissions  in digital  communications  (for details  see [1], 12.3).

For this,  the interpolation  points  are then (2πk/T, T C k  ) with  the DFT coefficients  ck  

and updated  sampling  time.  We test an example  with a triangle  function  and its 

known  Fourier  transform.  

In[  ]:= T = 1;

f[t_] = (t + T) (HeavisideTheta [t + T] - HeavisideTheta [t]) +

(- t + T) (HeavisideTheta [t] - HeavisideTheta [t - T]);

F[w_] = FourierTransform [f[t], t, w, FourierParameters → {1, -1}]

pf = Plot[f[t], {t, -3, 3}, PlotLegends → Placed [{"Sampled Function f"}, Above ],

PlotStyle → {Blue, Thickness [0.01]}]

Out[  ]=

2 - 2 Cos[w]

w2

Out[  ]=
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In[  ]:= pF = Plot[Abs[F[w]], {w, 0, 4 Pi}, PlotStyle → {Blue, Thickness [0.01]},

PlotLegends → Placed [{"Fourier Transform of the Sampled Function f,

right sided "}, Above ]]

Out[  ]=
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With 9 samples  we obtain  a first  rather  rough  approximation  for ℱf  covering  the 

angular  frequency  range  up 4π . It is shown  in the left image  below.  

Then,  we can improve  the approximation  by zero-padding.  We append  2039 zeros  to 

the samples  of f. Equivalently,  we sample  f  with  the same  sample  rate over  the time of 

T=2048/4s=512s.  The errors  come  from  the numerical  approximation  of Fourier  coeffi -

cients  by the DFT and from  alias  effects,  since  ℱf  has unbounded  support.  

In[  ]:= data = Table [ f[-1 + 2 n / 9], {n, 0, 8}];

phase = Table [(-1)^ k, {k, 0, 8}];

dft = phase Chop [Fourier [data, FourierParameters → {-1, -1}]]

pF1 = ListLinePlot [2 dft〚1 ;; 5〛,

DataRange → {0, 4 Pi}, PlotStyle → {Blue, Thickness [0.01]},

PlotLegends → Placed [{"Approximation of the Fourier Transform of f,

9 Samples of f"}, Above ]];

Out[  ]= {0.493827 , 0.204713 , -0.00699058 , 0.0246914 ,

-0.0105191 , 0.0105191 , -0.0246914 , 0.00699058 , -0.204713 }
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In[  ]:= datanew = Table [f[-1 + n / 4], {n, 0, 2047}]; (* equal sampling rate *)

phase = Table [(-1)^ k, {k, 0, 2047}];

dftnew = phase Chop [Fourier [datanew , FourierParameters → {-1, -1}]];

pz = ListLinePlot [Abs[512 dftnew 〚1 ;; 1024〛] + 0.03, DataRange → {0, 4 Pi},

PlotRange → All, PlotStyle → {Dashed , Red, Thickness [0.01]},

PlotLegends → Placed [{"Approximation of the Fourier Transform ,

9 Samples of f + 2039 appended zeros ,

shown with offset + 0.03"}, Below ]];

pF2 = Show [pF, pz]; (* updated sampling time T according

to the number of samples included the appended zeros *)

GraphicsColumn [{pF1, pF2}]

Out[  ]=
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3.5  DFT,   IDFT  and  Time  Windows  in Digital  Signal  Processing

Example  13.  WLAN  transmission  with  windowed  OFDM

In digital  communication  with multi-carrier  transmissions,  usually  OFDM (orthog -

onal frequency  division  multiplexing)  is used  in DMT, DSL, DVB,  WLAN,  LTE or 5G. 

The information  for transmission  is fed to the transmitter  as an encoded  bit stream.  

The information  of  N bit groups  is transformed  to complex  amplitudes  ck  of a trigono-

metric  polynomial  S(t) = ∑k=-N /2
N /2 ck ⅇik2πt/T on a time interval  [0,T]  with equally  spaced  

frequencies  k/T,  k=-N/2,...,N/2  (N even).

The parts  of a single  frequency  are called  carriers. The carriers  are pairwise  orthogonal  

in L2([0,T]),  which  motivates  the name  OFDM  for the method.  The trigonometric  

polynomial  S has the bandwidth  of 20 MHz  in WLAN . Control  of this 20 MHz  transmis -

sion bandwidth  in WLAN  is the task of the respective  hardware  in a WLAN  device.

Physically,  the signals  are voltage  curves  across  time.

The real-valued  transmission  pulse  Sℝ  is obtained  from  S by quadrature  amplitude  

modulation  (QAM)  with an angular  intermediate  center  frequency  ωc  and multiplied  

with a time-window  wT , i.e.,  defined  by  

Sℝ(t) = Re[ ⅇ ⅈ ωc t  ∑k=-N /2
N /2 ck ⅇik2πt/T  ]wT (t). The Fourier  coefficient  c0 is set to zero.

The rectangle  time window  wT is simply  the function  1[0,T ]. Different  modulations  for 

transmitting  this signal  are possible  and in use.  We focus  on the 16QAM modulation  

in WLAN  at 2.4 GHZ  with bandwidth  20 MHz.  With  16QAM , a pulse  is transmitting  48 

data carriers , each mapping  a 4-bit-group  out of the encoded  bitstream  to a  complex  

amplitude  of a carrier.  16QAM  maps  each possible  4-bit-group  one-to-one  to a com-

plex amplitude  out of 16 possibilities (see the constellation  diagram  on p. 85). The 

quadrature  amplitude  modulation  preserves  orthogonality  of the carriers  and the 

signal  bandwidth.  By QAM,  the spectrum  is shifted  to ωc  as angular  center  frequency.  

The samples  obtained  by an IDFT  of the amplitudes  ck  are interpolated  to eventually  

obtain  the real-valued  transmission  signal  Sℝ  (see also above  p.79,  3.4, Trigonometric  

Interpolation).  Thus,  almost  all can be achieved  with discrete  signal  processing.

The receiver can invert  this QAM  modulation,  thus get back  the complex  signal  S in 

the baseband  (center  frequency  = 0), detect  its complex  amplitudes  by a DFT of its 

samples and can thus reconstruct  the transmitted  bits from  the 16QAM  mapping.   

Signal  Processing:  The transmitter generates  with the amplitudes  of S a discrete  time 

signal  by an IDFT to obtain  a number  of interpolation  points.  An also discrete  quadra -

ture amplitude  modulation  of that complex  samples  yields  the samples  of the real-

valued  signal  Sℝ  that  can be fed to a lowpass  filter  (like  a Butterworth  lowpass  filter)  to 

obtain  a continuous  real-valued  signal  for transmission  (compare  the Shannon  Sam-

pling  Theorem) . The transmit  power  of a WLAN  device  (e.g.  100 mW)  is the actual  

radiated  RF power  — obtained  by scaling  and amplifying  the signal.

The receiver afterwards  can invert  the QAM  modulation  and compute  from  samples  

of the obtained  signal  the sought  complex  amplitudes  simply  by a DFT of that sam-

ples,  provided  that various  disturbances  in the transmission  channel  are mastered  by 

suitable  channel  equalization  (see for example  [4] and [7] on channel  estimation).   

Finally,  from  the 16QAM mapping  the transmitted  bit sequence  can be reconstructed.  
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The signal  contains  additionally  4 pilot  carriers  (-21,  -7, 7, 21) with known  frequencies  

and amplitudes  at the receiver , which  can be detected  at the receiver  and used  for 

synchronization  and channel  estimation  for denoising.  See example  7 in 3.1, p. 68. 

Windowing,  Spectral  Efficiency:  Using  a rectangle  time-window  1[0,T ] for an 

information  package  in a sent  pulse  however  causes  much  unacceptable  out-of-band  

emissions due to the low decreasing  of the window's  spectrum  (like  sinc-functions).  

Therefore  smoother  time-windows  are used  in practice  as, for example,  RC windows  

(raised  cosine  windows),  which  have  faster  spectral  decay.  We plot  an RC window.

T = 3.2 × 10 ^ (-6); (* duration of a rectangle window across seconds *)

tr = T / 16;

alpha = -1 + (T + 5 tr / 4) / T;

T (1 + alpha ) ;

(* slightly longer duration 3.45 x 10^(-6) s of the RC window *)

rcwindow [t_] = (0.5 × (1 - Cos[Pi t / (tr / 4)]) (UnitStep [t] - UnitStep [t - tr / 4]) +

(UnitStep [t - tr / 4] - UnitStep [t - (T + tr)]) +

0.5 × (1 + Cos[Pi (t - (T + tr)) / (tr / 4)])

(UnitStep [t - (T + tr)] - UnitStep [t - (T + 5 tr / 4)]));

p1w = Plot[rcwindow [t], {t, 0, 3.5 × 10 ^ (-6)},

PlotLegends → Placed [{"RC window complete "}, Above ],

Ticks → {{0.8 × 10 ^ (-6), 2. × 10 ^ (-6), 3.5 × 10 ^ (-6)}, {0.2, 0.4, 0.6, 0.8, 1.0}}];

p2w = Plot[rcwindow [t], {t, 3.38 × 10 ^ (-6), 3.5 × 10 ^ (-6)},

PlotLegends → Placed [{"RC window zoomed at boundary "}, Above ],

Ticks → {{3.4 × 10 ^ (-6), 3.45 × 10 ^ (-6), 3.5 × 10 ^ (-6)}, {0.2, 0.4, 0.6, 0.8, 1.0}}];

GraphicsRow [{p1w , p2w }]

Out[  ]=

RC window complete
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RC window zoomed at boundary
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0.2

0.4

0.6
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1.

Since  the duration  of the RC window  - shown  across  time in seconds  - is slighty longer  

than that of the rectangle  window,  orthogonality  of the carriers  is lost and a low inter-

carrier-interference  occurs  (ICI),  which  is mastered  however  by the 16QAM  encoding.   

Below  for comparison,  in the left figure  you see the decay  of the half-sided  spectral  

magnitude  of the rectangle  window  with duration  T and that of the RC window.  They 

are shown  across  frequencies  in Hz from  the center  frequency  of channel  1 in the 

WLAN  example  below  until  the start  of WLAN  channel  6 with  distance  1.5⨯107 Hz 

from the center  frequency.   
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The right  figure  below  shows  the 16QAM  constellation  diagram,  IEEE  802.11-2020.  

In[  ]:= ftwindow [w_] = T Sin[w T / 2] / (w T / 2) Cos[w alpha T / 2] / (1 - (alpha w T / Pi)^2);

(*Fourier transform of the window *)

ftrechteckwindow [w_] =

FourierTransform [UnitStep [t] - UnitStep [t - T], t, w, FourierParameters → {1, -1}];

p1 = Plot [Abs[ftwindow [2 Pi s]], {s, 0, 15 × 10^6},

PlotStyle → Directive [Red, Thickness [0.01 ]], PlotRange → {0, 4 × 10^ (-7)},

Ticks → {{2. × 10^6, 6. × 10^6, 10. × 10^6, 14. × 10^6}, Automatic }];

p2 = Plot [Abs[ftrechteckwindow [2 Pi s]], {s, 0, 15 × 10^6},

PlotStyle → Directive [Blue, Thickness [0.003 ]], PlotRange → {0, 4 × 10^ (-7)},

Ticks → {{2. × 10^6, 6. × 10^6, 10. × 10^6, 14. × 10^6}, Automatic }];

p3 =

Show [

p1,

p2];

p4 = Import ["/home /rolf /Desktop /16qam2.webp"];

GraphicsRow [{p3, p4}]

2. × 10
6

6. × 10
6

1. × 10
7

1.4 × 10
7

1. × 10
-7

2. × 10
-7

3. × 10
-7

4. × 10
-7

                                                                                                                                    16QAM Constellation Diagram 

      Absolute values of the spectral magnitude of the                      The I-Axis means the real parts, the 

      rectangle window (blue) and of the Raised Cosine                  Q-Axis the imaginary parts of complex              

      window (red), showing the far better damping of                       numbers. For example, the bit group                

      the RC window for increasing frequencies.                                              1001 is mapped to 3 - 1 ⅈ.     

Note that each  single  carrier ck ⅇ ⅈ k ω0 t in a sent  pulse  (see below)  with amplitude ck

has the spectrum  ck ℱ [window] (ω - k ω0) with  ℱ  the Fourier  transform , ω0 = 2π/T. 

With regard  to radiation  and spectral  efficiency , this demonstrates  the relevance  of 

pulse  shaping  with the time window .
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Now,  we consider  two typical  spectral  shapes  of a single  WLAN  pulse , which  I gener -

ated with Mathematica  according  to the 16QAM  mapping  of groups  of 4 bits each  to a 

complex  amplitude.  I omit  the somewhat  lengthy  Mathematica  commands  for this 

here.  This  pulse  consists  of a single  OFDM  symbol , which  transmits  with  16QAM  an 

information  package.  The 802.11a/g  standard  in the 2.4 GHz frequency  band  with  

16QAM  uses  48 data  subcarriers and 4 pilot  subcarriers with carrier  numbers  

(-21,  -7, 7, 21),  with known  complex  amplitudes  at the receiver.  Thus,  for the pulse  a 

trigonometric  polynomial  is used  with 52 equally  spaced  frequencies  to transmit  the 

data (192 bits of an encoded bit stream)  in complex  amplitudes  ck  as described  

shortly  above.  The actual  useful  information  bits are less than 192 in a pulse,  because  

they are transmitted  with a code rate for error  correction  redundancy.  For example,  a 

code rate of 3/4 means  that out of four transmitted  data bits,  three  actually  contain  

useful  data  and the fourth  bit is an error  correction  redundancy  bit.  The bitstream  is 

usually  encoded  with convolutional  coding  as forward  error  correction  (FEC).  Physi-

cally,  the signals  are voltage  curves  across  time.

The total  channel  bandwidth  is 20 MHz  with an occupied  bandwidth  of 16.6 MHz  for 

the overall  data  transmission.  The subcarrier  spacing  is 312.5  kHz.  The channel  spac-

ing is 25 MHz.  Below  you clearly  see that the blue spectral  energy  distribution  of a 

transmission  with a rectangle  time window  has much  more  out-of-band  emission  

than the red spectral  energy  distribution,  where  an RC pulse  shaping  is used . 

Thus,  pulse  shaping  is a relevant  topic  in communication  engineering  to mitigate  

interferences.  

The channels  1, 6 or 11 are often  used  and suitably  chosen  by WLAN  routers  at home  

operating  at 2.4 GHz with 20 MHz  bandwidth,  if several  networks  operate  in a near  

neighborhood,  because  these  channels  hardly  show  mutual  interferences.  You can 

check  this with your  router  at home.  Some  channels  may be restricted  in certain  

countries  (e.g.  the US does  not permit  channel  12 to prevent  interference  with other  

devices  in the adjacent  frequency  band  like satellite  phones  and other  low-speed  data  

communications).  

The allowed  out-of-band  radiations  are regulated  in IEEE  specifications  with spec-

tral masks  for various  transmission  methods.  The RC pulse  shape,  for example,  fulfills  

the requirements  for WLAN  802.11a/g,  the pulse  with a rectangle  time window  does  

not meet  the requirements.  

This is demonstrated  in the following  illustration.  Compare  the corresponding  radia -

tions  of channel  1 at 2427 MHz,  where  the carriers  of channel  6 start.  The pulse  shape  

with a rectangular  time window  in blue, that of an RC pulse  shape  in red. The RC

pulse  shaping  as shown  here is used in real  systems , for example,  by Broadcom accord -

ing to "L. Montreuil  et al. (2013),  Broadcom Recommendations  for Tx Symbol  Shap -

ing".  Broadcom is a supplier  for digital  communication  devices  of various  providers  

and offers  also PCI WiFi  Cards.  
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Out[  ]=

Supplementary  explanations

1) The WLAN  signal  is an energy  signal , it has no power  density  spectrum  in the classi -

cal sense.  In practice  for transmission  tests,  a great  number  of OFDM  signal  pulses  

transmit  a random  01-sequence.  Their  spectra  are averaged  to obtain  an approxima-

tion for a power  spectral  density  (PSD) . Such  PSD diagrams  are used  by manufacturers  

to demonstrate  compliance  with regulations  for out-of-band  radiations  in WLAN  

transmissions.  A power  spectral  density  can theoretically  be introduced,  if the OFDM  

transmission  is mathematically  modeled  as a stationary  stochastic  process  (Wiener-

Chintchin-Theorem).  

In PSD figures,  the results  are mostly  shown  in units  dBm/Hz  relative  to a total  

power. Alternatively,  as above  with my single  OFDM  symbol  spectrum,  it can be 

shown  in dBr,  which  is normed  so that  the peak  is at 0 dB. The spectral  masks  in the 

IEEE  regulations  are given  in dBr , because  only  the shape  of the power  density  spec-

trum matters,  when  the out-of-band  radiation  is relevant.  For example,  in 802.11g  for 

WLAN  with OFDM  the radiation  must  fulfill  -28 dBr at 20 MHz  offset  and -40 dBr at 

30 MHz  offset  from  the center  frequency.  A pulse  with the rectangle  time window  

does not fulfill  this requirement.

To give an example,  how a PSD picture  of such  a measured  average  spectral  power  

density  comes  about,  we must  know  the total  power  to which  the measurement  is 

related.  The example  below  shows  dBm/Hz  across  frequencies  with a  peak  level  of 

about  -40 dBm/Hz.  The total  power  P, to which  this measurement  is related,  is not 

shown.  The unit  is dBm/Hz  for the bandwidth  2 MHz.  The physical  unit  is V 2/Hz.   

    dBm=dBm/Hz+10  Log[10,  bandwidth  in Hz],  dBm   = 10  Log[10,  P/1  mW]

                                                            P = 10dBm/10·1 mW,  

i.e., for -40 dBm/Hz,  dBm=33.0103.  We find P ≈ 2000  mW.  A WLAN  transmission  

device  typically  has a transmission  power  of 100 mW (20 dBm)  in the 2.4 GHz band  

for the signal.  
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Here the example  of such  a spectral  power  density,  presumably  made  with a rectangu -

lar time window.  The used  time window  is not specified  on the screen  of this spectral  

analyzer,  but we can compare  with the previous  graphic  above  to obtain  this presump -

tion.  

Out[  ]=

2) Some  relevant  data on WLAN  with OFDM  and 16QAM  in the 2.4 MHz  band:

FFT length                               64

Guard  Interval  (GI)  1/4

Data Carriers                          48

Pilot  Carriers                            4

The guard  interval  defines  a duration,  which  is available  for a cyclical  extension  of 

the signal  to the left as a so-called  cyclic  prefix . The cyclic  prefix  is realized  as a copy  

of the last samples  of the OFDM  symbol  that is prepended  to the actual  time signal  

samples.

The primary  purpose  of the cyclic  prefix  is to mitigate  the effects  of multipath  propaga -

tion as delay  spread  that can cause  inter-symbol  interference  (ISI)  in wireless  commu -

nication.  By inserting  the cyclic  prefix,  the receiver  can tolerate  a certain  amount  of 

delay  in the received  signal  without  introducing  ISI (see [1], ch. 12 for a detailed  

example).

An important advantage  of a cyclic  prefix  is that the convolution  with the impulse

response h of a time-invariant  transmission  channel  can mathematically  be repre -

sented  as a cyclic  convolution,  if this impulse  response  does  not last longer  than the 

prefix.  This  allows  for interference  suppression  using  the samples  of the estimated  

channel  frequency  response  ℱ (h),  because  the received  signal  r is the convolution  

                                          r = S * h + additive  noise . 
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Thus without  noise,  division  of the spectral  values  of r, obtained  from the DFT of the 

received  signal  samples,   by the corresponding  values  of ℱ (h) would  directly  give the 

sought  signal  amplitudes  ck of S (cf. [1], ch.12) . However,  a convolution  equation  of 

that type is an illposed problem  (think  of very  small  values  of ℱ (h)), and in real  prac-

tice various  modified  estimation  algorithms  are used.  For details  on spectral  estima -

tion see,  for example,  [7] K. D. Kammeyer,  K. Kroschel.

A cyclic  postfix  is analogously  a copy  of the first  carriers  of the OFDM  symbol  that is 

appended  to the end of the symbol.  While  less common  than the cyclic  prefix,  it can 

be used  in conjunction  with windowing  techniques  in some  OFDM  implementations,  

such as in some  5G waveforms.  For more  on this,  see [1], ch. 12.

16QAM

Duration  of an OFDM  symbol       4 μs

Guard  Interval  Duration               0.8 μs

IDFT Period                                       3.2 μs  

Data Carriers                                      48  

802.11a  with 20 MHz  channel  bandwidth  uses  64 carriers,  48 of which  are reserved  for 

data,  and 4 for pilot  tones.  

Code Rate                    1/2 or 3/4   

Maximal  Bit Rate      24 Mbps with Code  Rate  1/2  

[(48 number of carriers ⨯ 4 bits per carrier ⨯ 1/2 code rate)/(4 μs symbol duration) = 24 Mbps]

Maximal  Bit Rate     36 Mbps with Code  Rate  3/4                                                      

[(48 ⨯ 4 ⨯ 3/4)/4 = 36]

With 64QAM  und code  rate 3/4,  the maximal  bit rate is accordingly  54 Mbps, often  

offered  in DSL contracts,  that are also based  on OFDM  transmission  technology.  

Code rates  < 1 come  from  coding  the bitstream  of useful  data with error-correcting  

codes  (convolution  codes).  A code  rate of 3/4 means  that out of four transmitted  data  

bits,  three  actually  contain  useful  data and the fourth  bit is an error  correction  redun -

dancy  bit.

Summary. In that application  example,  widely  used  in digital  devices  of our everyday  

live,  I have  tried  to explain  only  the basic  principle  of the physical  layer  of an OFDM  

transmission.  There  are many  topics  that need  to be mastered  for practical  real-time  

transmission  within  a few μs per symbol  with  OFDM  or modifications  of the proce -

dure (OFDMA,  COFDM,  FBMC,  GFDM,  etc.).  These  include,  in particular,  peak reduc -

tion (with  many  equal  amplitudes  in the OFDM  symbols),  peak-to-average  power  

ratio reduction  (PAPR),  channel  equalization  with  multiple  frequency-selective  chan -

nels (Doppler  effects  with  moving  transmitters  or receivers  causing  frequency  disper -

sion),  denoising, and many  others . Despite  mathematically  simple  principles,  it is a 

long way to a robust  technology,  demanding  high skill  from  engineers  and computer  

scientists.  For a detailed  treatment  of communication  engineering,  [4] L. W. Couch  

(2012),  “Digital  and Analog  Communication  Systems”  can be a helpful  reference.  

Since  almost  everything  in the presented  transmission  can be done  with discrete  

signal  processing,  algorithms  can be developed  once  and then distributed  millions  of 

times  without  significant  additional  costs.  This  allows  for low acquisition  costs.
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In implementations  for computing  a DFT usually  the fast FFT algorithm  is used.  It 

reduces  the number  of computations  for an N = 2n point  DFT from  N2  to N  log2(N). 

Thus it yields  a significant  reduction  of computation  time.  The algorithm,  along  with 

its recursive  application,  was invented  by Carl  Friedrich  Gauss  around  1805.  Cooley  

and Tukey  independently  rediscovered  and popularized  it 160 years  later.  For details

see [1], ch. 6, or other  references  on the topic.  For a DFT and IDFT,  in Mathematica  

the FFT is used as default . 

The FFT was one of the Top 10 “Algorithms  of the Century ”.   

Finally  you see two images  of the authors  of the Fast  Fourier  Transform  algorithm  

(FFT),  one of the top 10  "Algorithms  of the Century"  as listed  by the IEEE  Computer  

Society  Journal.

James  W. Cooley  (1926  - 2016)

Out[  ]=

John Tukey  (1915  - 2000)
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Example  14.  Windowed  Fourier  transform  with  a DFT,  Spectrograms  

In its classical  form,  the Fourier  transform  ℱ does  not allow  for simultaneous  time-

frequency  analysis.  For example,  speech  or a piece  of music  in our everyday  experi -

ence has a specific  “time  pattern”  and at the same  time a specific  “frequency  pattern”.  

However,  the spectral  function  of a signal  does  not show  at what  times  and with what  

respective  amplitudes  a specific  angular  frequency  ω occurs  in a signal  f , but rather  

accumulates  contributions  of the same  angular  frequency  ω over  the entire  time 

course  of f in ℱ f(ω).  Dennis  Gabor  (1900-1979)  already  noticed  these  disadvantages  

for signal  processing  purposes,  and in 1946 in his work  “Theory  of Communication”,  

he proposed  time-frequency  localization  through  Fourier  transforms  with window  

functions.

To obtain  information  about  the “time-frequency  pattern”  of a signal,  one determines  

not the spectral  function  of the entire  signal,  but the spectral  functions  for time seg-

ments  of f . Time  segments  of a signal  f are obtained  by multiplying  f with  functions  of 

finite  effective  duration.  Such  functions  are referred  to as window  functions  or time 

windows  as considered  above.  We consider  the following  example.  

A short-term  model  for a siren  is approximately  the function  or chirp  f (t)=A  sin(g(t))  

with g(t)=2πt (αt+ βt 2) for 0⩽t⩽10  s and constants  A, α , β . The derivative  of the argu-

ment  g'(t)=2πt(2α+ 3βt) can be considered  as the instantaneous  angular  frequency  at 

time t. The magnitude  spectrum,  approximately  calculated  with a DFT for paramters 

A=1,  α= 4[1/ s2], β =-4/15  [1/s3] over  T = 10 s, shows  a multitude  of frequencies  up to 

the maximum  frequency  20 Hz, but not the parabolic  frequency  modulation  and not 

the instantaneous  frequencies  at different  times  (left  image  below).  The graph  of an 

approximation  for the windowed  Fourier  transform  of f with  the “Hann  window”  

w(t)=0.5-0.5  cos( 2 πt/T) for 0 ⩽t⩽ T=1 s, on the other  hand,  clearly  shows  the rise and 

fall of the instantaneous  frequencies  and corresponds  to our usual  impression  of the 

variable  frequency  of the siren  tone (right  image).  The calculations  used  a 512-point  

DFT over  a total  of T =10 s, with the DFT coefficients  CkT plotted  as approximations  

for ℱ f(2πk/T) in the first  image.  In the second  case,  50 Hann  windows  of duration  1 s 

were used  at intervals  of 0.2 s each.  Per time segment,  a 128-point  DFT was performed  

and the resulting  (single-sided)  DFT magnitude  spectra  were  combined  to form  the 

second  image.  Neither  representation  shows  the constant  amplitude  A=1.  One reason  

is the strong  aliasing  effects  due to the frequency  modulation.  The sum of the |Ck
2 of 

the first  image  agrees  numerically  very  well  with the quadratic  mean  of f in [0, T] (in 

both cases,  the value  is about  0.5).  Numerical  integration  to calculate  the windowed  

Fourier  transform  for 20 Hz at t0 = 5 s results  in approximately  0.24,  as shown  in the 

following  spectrogram  on the right.  The signal  values  (and thus A) can only  be approxi -

mately  recovered  from  the DFT using  an interpolation  polynomial  or the formula  for 

discrete  reconstruction  from  the data  (for more  details  please  see [1], 12.5).  Now to 

the images:

In[  ]:=

ClearAll ["Global` *"]
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In[  ]:= B = 1;

M = 128;

NN = 50;

h[x_] = UnitStep [x];

w[x_] = (0.5 - 0.5 Cos[2 Pi B x]) * (h[x] - h[x - 1 /B]);

f[x_] = Sin[2 Pi 20 × (2 / 10 x ^ 2 - 1 / 75 x ^ 3)]

data0 = Table [f[10 n / 512], {n, 0, 511}];

dft = Chop [Fourier [data0 , FourierParameters → {-1, -1}]];

pdft = ListLinePlot [Abs[dft], PlotRange → All,

PlotLegends → Placed [{"DFT Magnitude ,T=10,N=512,

rectangle window "}, Above ]]

data1 [k_, j_] = N[w[j / (B M)] × f[k * 0.2 + j / (B M)]];

FT1[k_, n_] := N[1 /M Sum[data1 [k, j] Exp[-2 Pi I n j /M], {j, 0, M - 1}]];

z[k_, n_] := N[Abs[FT1[k, n]]];

data2 = Table [z[k , n], {n, 1, 25}, {k, 0, NN - 1}];

pwindowed =

ListPlot3D [data2 , PlotRange → All, Mesh → 100, Axes → {True, True, True},

Boxed → False , AxesLabel → {"Window No.,Time in s =

Window No. x 0.2s" , "Hz", "Magnitude "},

AxesStyle → Directive [Black , Plain, 10],

PlotStyle → Directive [PlotPoints → 100], ViewPoint → {30, -40, 50},

AxesEdge → {{-1, -1}, {1, -1}, {-1, -1}},

Ticks → {{10, 40}, {10, 20, 25}, {0.0, 0.2}},

PlotLegends → Placed [{"3D Spectrogram , Windowed Fourier Transform ,

50 Hann Windows in T=10s"}, Above ]];

Out[  ]= Sin40 π x2

5
-

x3

75

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Out[  ]=

DFT Magnitude ,T=10,N=512,

rectangle window
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Now the 3D illustration  of the windowed  Fourier  transform  showing  the time-fre -

quency  pattern  of the signal.  

The illustration  is also called  a spectrogram.

In[  ]:= Show [pwindowed ]

Out[  ]=

3D Spectrogram , Windowed Fourier Transform ,

50 Hann Windows in T=10s

In Mathematica  you can illustrate  spectrograms  in a 2D image  with the command  

Spectrogram  for a list of sampled  data . For tests  this is left to the reader.  Instead  we 

make  a 2D representation  ourselves  with MatrixPlot  for our list data2:
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In[  ]:= mplot = MatrixPlot [data2 , PlotLegends → True,

Axes → True, FrameLabel → {"Hz", "Window No."},

DataReversed → {True, False }, ColorFunction → "CMYKColors "];

2 D Spectrogram  of the siren  signal,  time t = window  number  · 0.2s.  

It could  be sharpened  with more  sampling  points.

In[  ]:= Show [mplot ]

Out[  ]=
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3.6 The Discrete  Cosine  Transforms  DCT  I and DCT  II

Widely  used  variants  of the DFT for real  - valued  functions  are the discrete  Cosine  

transforms  DCT I and DCT II. 

   

1. The discrete  Cosine  Transforms  DCT  I

We assume  a continuous,  piecewise  continuously  differentiable  real-valued  function  f 

on [0, T], which  we think  of as being  extended  to an even  2T-periodic  function  fp on 

the line,  and consider  samples  yn of fp with  the symmetry  yn = y-n .

With N=2m  samples  yn= fp(nT/m)   for n =-m +1, . . . , m, we obtain  for the DFT coeffi -

cients  ak = Ck + C-k = 2 Ck  of fp and 0⩽k⩽m,  due to the symmetry

                                       yn=yn±2 m= fp(nT/m±2T)  and  the  relation  

                                       Exp[-ⅈ πkn/m]=Exp[  ⅈπk(n±2m)/m]  

                                       

the DCT I  and its inverse  (see also [1], chapter  6 for more  details).  The IDCT  can 

directly  be seen from  the interpolation  polynomial P2 above,  because

                                     yn=P2(nT/m)  with ω0=π/T for the 2T-periodic  fp.

                                     

              DCT  I          ak =
2
m

 y0

2
+ ∑n=1

m-1 yncos(πkn/m)  +
ym

2
cos(kπ)),   k=0,...,m  
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            IDCT  I          yn =  
a0

2
+ ∑k=1

m-1 akcos(πkn/m)  +
am

2
cos(nπ),           n=0,...,m

            

Before  showing  applications  of the DCT,  we turn to another  option  and consider  

interpolation  with a shifted  set of nodes  in comparison.  This  case results  in the vari-

ant known  as DCT II, which  is particularly  widespread  in DCT applications.  Here  we 

describe  simply  the result  and refer  to [1], chapter  6 for more  details  and proofs.  

2. The discrete  Cosine  Transforms  DCT  II

As before,  we assume  a given  continuous,  piecewise  continuously  differentiable  real-

valued  even  2T -periodic  function  fp . However,  we now choose  a shifted  set of nodes  

tn, at which  the samples  are taken:

                                        tn=(2n+1)T/(2m),  0⩽n⩽2m-1.  

Using  the given  symmetry  properties  we achieve  after  some  calculation  (see [1], 6.4) 

the corresponding  real-valued  trigonometric  interpolation  polynomial  P3 from  the 

formula  for P2 above  as 

              P3(t)=
a0

2
+ ∑k=1

m-1 akcos(ω0kt)  with  ω0=π/T,  yn =  fp(tn) and the DCT II is 

              

                DCT II : ak =
2
m

 ∑n=0
m-1 yn cos(πk(2n+1)/(2m)),        k=0,...,m-1.  

                

               IDCT  II:      We can immediately  recognize  the inverse  IDCT  II from  P3. 

                                       yn = 
a0

2
+ ∑k=1

m-1 ak cos(πk(2n+1)/(2m))      n=0,...,m-1.

                                       

The DCT II in its 2D variant  is widely  used  in image  processing  as for JPEG  compres -

sion algorithms.  It is also closely  connected  with interpolation  by Chebyshev  polyno -

mials  as we will  see in the subsequent  section  3.7. 
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3.7 Interpolation  with  the DCT  I and DCT  II

As an example  we consider  the so-called  Runge  function  runge[t]=1/(1+25  t 2) in the 

intervall [-1,1].  

It is infinitely  often  differentiable  on the entire  reals,  but its power  series  has only  

convergence  radius  1/ 5 due to the poles  at ± 1/ 5  ⅈ . We make  first  a trigonometric  

interpolation  with the DCT I and then an interpolation  with the DCT II with  shifted  

nodes.  This  is a remarkable  example,  because  polynomial  interpolation  with equidis -

tant nodes  give very  bad approximations.  We will  see this in the subsequent  section  

3.9, where  Chebyshev  polynomials  with  Chebyshev  nodes  are used  for interpolation.  

There  the coefficients  for the interpolation  polynomials  are also obtained  with a DCT.  

In[  ]:= runge [t_] = 1 / (1 + 25 t^ 2);

plot20 = Plot[runge [t], {t, -1, 1}, PlotRange → {0, 1},

PlotLegends → Placed [{"Runge function "}, Above ],

PlotStyle → {Blue, Thickness [0.008 ]}, ImageSize → Small ]

Out[  ]=

Runge function

-1.0 -0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

1) Now a DFT and equivalently  a DCT I with  an even  number  NN of samples.  As 

already  above,  we have  to correct  the phases  in the DFT spectrum,  because  we take 

the samples  in [-1,1].  The resulting  spectrum  must  be real  and even  (see [1], 4.1.)

In[  ]:= T = 2; NN = 16;

data20 = Table [runge [-1 + T k /NN] , {k, 0, NN - 1}];

dataphase20 = Table [(-1)^ k, {k, 0, NN - 1}];

dft20 = dataphase20 *Chop [Fourier [data20 , FourierParameters → {-1, -1}]];

Here  the uniquely  determined  real  trigonometric  interpolation  polynomial  with  the 

maximal  frequency  in the above  defined  vector  space  VNN/2. Above,  this approxima -

tion was called  P2(t) with  NN/2=m.  

In the example  we have  the maximal  frequency  4 Hz. We plot  the Runge  function  and 

this approximation  in Red with a small  offset  +0.03  for a better  visibility.  
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In[  ]:= rungeapprox1 [t_] =

FullSimplify [Sum[dft20〚k + 1〛 Exp[I * 2 Pi / T k t], {k, 0, NN / 2 - 1}] +

Sum[dft20〚k + 1〛 Exp[I * 2 Pi / T * (k - NN) t], {k, NN / 2 + 1, NN - 1}]] +

dft20〚NN / 2 + 1〛 Cos[NN / 2 * 2 Pi / T * t]

offset =

0.03;

Out[  ]= 0.274611 + 0.344365 Cos[π t] + 0.175654 Cos[2 π t] +

0.0972947 Cos[3 π t] + 0.050132 Cos[4 π t] + 0.0285903 Cos[5 π t] +

0.0149957 Cos[6 π t] + 0.0105194 Cos[7 π t] + 0.00383778 Cos[8 π t]

In[  ]:= plot21 = Plot[rungeapprox1 [t] + offset , {t, -1, 1},

PlotRange → {0, 1.1}, PlotStyle → {Red, Thickness [0.008 ]},

PlotLegends → Placed [{"Approximation with a DFT/DCT I"}, Below ]];

In[  ]:= Show [{plot20 , plot21 }]

Out[  ]=

Runge function
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0.2

0.4

0.6

0.8

1.0

Approximation with a DFT /DCT I

This DFT approximation  is the same  as with a DCT I with  NN/2+1=9  samples  in the 

interval  [0,1]  of the form  tk= k/m for k=0,...,m  with m=NN/2.

2) Now  an interpolation  by a DCT  II with an even  number  of samples.  The nodes  are 

tk=(2n+1)/NN  for 0⩽n⩽NN2/2-1.  We use here  the DCT II, which  is implemented  in 

Mathematica  with the command  FourierDCT[list,2]  and choose  NN2=NN+2,  m=N -

N2/2,  NN=16  from  before  to obtain  the same  maximal  frequency  as above.  The result -

ing interpolation  function  is P3(t) in the notation  from  above  and in [1], 6.6.

In[  ]:= NN2 = NN + 2; m = NN2 / 2; (* now take the samples in [0,1] *)

list = Table [runge [(2 n + 1) / (2 m)] , {n, 0, m - 1}];

dct2 = 1  m FourierDCT [list, 2] ;

rungeapprox2 [t_] = dct2〚1〛+ Sum[2 dct2〚k〛 Cos[(k - 1) π t], {k, 2, m}]

Out[  ]= 0.27471 + 0.344011 Cos[π t] + 0.175799 Cos[2 π t] +

0.0967712 Cos[3 π t] + 0.050008 Cos[4 π t] + 0.0274507 Cos[5 π t] +

0.0138577 Cos[6 π t] + 0.00727322 Cos[7 π t] + 0.00286974 Cos[8 π t]
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In[  ]:= offset = 0.03;

plot22 = Plot[rungeapprox2 [t] + offset , {t, -1, 1},

PlotRange → {0, 1.1}, PlotStyle → {Red, Thickness [0.008 ]},

PlotLegends → Placed [{"Approximation with a DCT II"}, Below ]];

Show [{plot20 , plot22 }]

Out[  ]=

Runge function
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0.4

0.6

0.8

1.0

Approximation with a DCT II

Subsequently  the absolute  approximation  errors  of both  trigonometric  polynomials  

for a comparison.  The zeros  of the error  curves  are the positions,  where  the Runge  

function  is interpolated.  In both  cases  we have  9 those  nodes  in [0,1].   

In[  ]:= errordct1 [t_] = Abs[runge [t] - rungeapprox1 [t]];

errordct2 [t_] = Abs[runge [t] - rungeapprox2 [t]];

In[  ]:= plot23 = Plot[errordct1 [t], {t, -1, 1},

PlotRange → {0, 0.008 }, PlotStyle → {Red, Thickness [0.005 ]},

PlotLegends → Placed [{"Error with DCT I"}, Below ]];

plot24 = Plot[errordct2 [t], {t, -1, 1}, PlotRange → {0, 0.008 },

PlotStyle → {Blue, Thickness [0.005 ]},

PlotLegends → Placed [{"Error with DCT II"}, Below ]];

Show [{plot23 , plot24 }]

Out[  ]=

-1.0 -0.5 0.0 0.5 1.0

0.002

0.004

0.006

0.008

Error with DCT I Error with DCT II
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3.8 Application  of the DCT  I in Numerical  Integration,  Clenshaw-Curtis  Quadrature

In [1], 6.5 the Clenshaw-Curtis  quadrature  is derived.  We will  consider  it here  as an 

application  of a DCT I with the example          

                                        f [t_] = ⅇt +3 Cos[24  t ] - t 6  on  [-1,1].  

The following  representation  shall  give readers  already  a first  impression  of the use of 

vectors  and matrices  in Mathematica.   

               

We choose  as example  m=12  for 2m+1  used  samples  of f  for the algorithm.  

As shown  in [1], with  the Clenshaw-Curtis  quadrature  instead  of f (cos(ϕ))sin(ϕ)  on 

[0,π] a trigonometric  approximating  polynomial  for the factor  f (cos(ϕ))  on [0,π] is 

integrated,  which  is obtained  by a DCT 1 and has the maximal  angular  frequency  2m. 

With that,  an approximation  SN(f  ) for the desired  integral  of f  over  [-1,1]  is com-

puted.         

In [1] it is shown  that one can use a  DCT I with  only  m+1 samples  for the computa -

tion of the weights  wn in the quadrature  formula  

        

                                    SN(f  ) = ∑n=0
m wn ( f (xn) + f (-xn))  

                                with  xn=Cos[nπ/(2m)],  0⩽n⩽m.

       

For the computation  in the example  we define  as in [1], 6.5 the (m+1)x(m+1)  DCT I 

matrix  and proceed  as described  there.  

With the subsequently  defined  vector  b for the computation  of the weights  we need  

the transpose  of the DCT I matrix,  which  is called  dctmatrixtransposed. 

In[  ]:= m = 12;

dctpart1 = Table [1 /m Cos[π (k - 1) (n - 1) /m], {k, m + 1}, {n, 2, m}];

dctpart2 = Map[Prepend [#, 1 / (2 m)] &, dctpart1 ];

vector = Table [1 / (2 m) Cos[π (k - 1)], {k, m + 1}];

dctmatrixtransposed = Append [Transpose [dctpart2 ], vector ] ;

(* with dctmatrixtransposed //MatrixForm you can see the usual matrix form as

output . But dont do that here in the definition of dctmatrixtransposed ,

because otherwise matrix multiplication with b below does not work *)

In[  ]:= dctmatrixtransposed // MatrixForm
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Out[  ]//MatrixForm=
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Now the needed  vector  b, and with that  the computation  of the vector  w of weights  

for the quadrature.  They  all are positive   with  the sum equal  to 1. 

In[  ]:= beta = Table [2, {k, m + 1}]; beta〚1〛 = 1; beta〚m + 1〛 = 1;

b = Table [beta〚k〛 / (1 - 4 (k - 1)^ 2), {k, m + 1}];

w = N[dctmatrixtransposed .b]

Out[  ]= {0.00173913 , 0.0166755 , 0.0340258 , 0.0500188 , 0.0654954 , 0.0796553 ,

0.0925836 , 0.103831 , 0.113378 , 0.120922 , 0.126452 , 0.129768 , 0.0654559 }

In[  ]:= Sum[w〚k〛, {k, 1, m + 1}]

Out[  ]= 1.

Finally  the necessary  samples  of f  and the numerical  integration  :

In[  ]:= f[t_] = Exp[t] + 3 Cos[24 t] - t^ 6;

y = Table [N[f[Cos[(k - 1) π / (2 m)]] + f[-Cos[(k - 1) π / (2 m)]]], {k, 1, m + 1}]

Out[  ]= {3.63124 , 2.55048 , -0.84054 , -4.22864 , -0.183221 , 8.05541 ,

0.451138 , -0.453541 , 7.28713 , -3.68553 , 8.05142 , -3.98271 , 8.}

Result: The value SN by the Clenshaw-Curtis quadrature is 

In[  ]:= SN = w.y

Out[  ]= 1.83855

For comparison:  You can exactly  solve  the integral
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In[  ]:= integral = Integrate [f[t], {t, -1, 1}]

Out[  ]= -
2

7
-

1

ⅇ + ⅇ+ Sin[24]

4

In[  ]:= N[%, 16]

Out[  ]= 1.838293511071661

The reason  for the difference  of the integral  values  is the fixed  number  2m+1  of sam-

ples we worked  with,  while  Mathematica  iterates  to get a certain  precision.  The quadra -

ture with N+1=2m+1  nodes  is exact  for polynomials  up to the degree  N. For the compu -

tation  of the weights  a DCT I of length  m+1 is sufficient.  

An example for an little program with Mathematica with the Clenshaw-Curtis quadrature 

A program  in Mathematica  is a Module, which  we here  call  ccq[g,{a,b},m,opt]  for 

integration  of g:[a,b]⟶ℝ  with  m as above,  i.e.,  polynomials  up to degree  2m are 

exactly  integrated.  The parameter  opt is the number  of decimals  in the result.   

In[  ]:= ccq[g_, {a_, b_}, m_, opt_] :=

Module [{f , x, dctpart1 , dctpart2 , dctmatrixtransposed , beta, be, w, y, dez},

f[x_] = g[(b - a) / 2 x + (a + b) / 2] (b - a) / 2;

(* hier wird Substitution benutzt *)

dctpart1 = Table [1 /m Cos[π (k - 1) (n - 1) /m], {k, m + 1}, {n, 2, m}];

dctpart2 = Map[Prepend [#, 1 / (2 m)] &, dctpart1 ];

vector = Table [1 / (2 m) Cos[π (k - 1)], {k, m + 1}];

dctmatrixtransposed = Append [Transpose [dctpart2 ], vector ];

beta = Table [2, {k, m + 1}]; beta〚1〛 = 1; beta〚m + 1〛 = 1;

be = Table [beta〚k〛 / (1 - 4 (k - 1)^ 2), {k, m + 1}];

dez = opt; w = N[dctmatrixtransposed .be, dez];

y = Table [N[f[Cos[(k - 1) π / (2 m)]] +

f[-Cos[(k - 1) π / (2 m)]], dez], {k, 1, m + 1}];

w.y]

Example  15.  We choose  g as the above  integrated  function  on [-1,1],  but this time 

with m=24,  i.e.,  49 samples  for the numerical  integration.  thus we achieve  - except  the 

last decimal  - the same  result  as in the computation  above  from  the exact  solution  

with 16 decimals.  

In[  ]:= g = Function [{t}, Exp[t] + 3 Cos[24 t] - t^ 6];

ccq[g, {-1, 1}, 24, 16]

Out[  ]= 1.838293511071663
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Example  16.  We integrate  the polynomial  p[x] = x3 -3 x12 +10 x15 on [1,3]  with  m=8 

and opt=20.  

Since  p is a polynomial  of degree  less than 16, this quadrature  is exact.  

In[  ]:= p[x_] = x ^ 3 - 3 x ^ 12 + 10 x ^ 15;

ccq[p, {1, 3}, 8, 20]

Out[  ]= 2.6536299538461538462 × 107

We test the result  by exact  integration  and let Mathematica  show  a decimal  approxima -

tion with again  20 decimals.  

In[  ]:= Integrate [p[x], {x, 1, 3}]

N[%, 20]

Out[  ]=

344 971 894

13

Out[  ]= 2.6536299538461538462 × 107

3.9  Application  of the  DCT  in Interpolation  with  Chebyshev  Polynomials

The Chebyshev  polynomial  T[n,x]  of the first  kind with degree  on [-1,1]  for n⩾0 is 

defined  by 

                                                     T[n,x]  = cos[  n arccos[x]].

                                                     

With the trigonometric  addition  theorems  for the cosine  you quickly  find the recur -

sion equation  (n=1,2,...)

                                                  T[n+1,x]=2x  T[n,x]  - T[n-1,x].  

                                                  

This shows  that T[n,x]  is a polynomial  of degree  n and as that is defined  on entire  ℝ 

and ℂ. For even  n the T[n,x]  are even,  for odd n they are odd functions  and always  it 

holds  | T[n,x]  | ⩽ 1 auf [-1,1].   The coefficient  an  of an xn in T[n,x]  is 2n-1.  Since  cos[nx] 

in [0,π] has exactly  n zeros,  the polynomial  T[n,x]  has exactly  n real  zeros  in [-1,1].  

These  zeros  x[k] are x[k] = cos[  (2k-1)π/(2  n)]  für k=1,...,n.                                                             

Mathematica  knows  the Chebyshev  polynomials  as ChebyshevT[n,x].  We plot  the first  

5 of them  and observe  their  symmetry  properties  and zeros.
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In[  ]:= Plot[Evaluate [Table [ChebyshevT [n, x], {n, 0, 5}]], {x, -1, 1},

PlotStyle → Directive [Hue, Thickness [0.006 ]],

PlotRange → All, PlotLegends → {0, 1, 2, 3, 4, 5}]

Out[  ]=

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

0

1

2

3

4

5

Chebyshev Polynomials as an orthogonal system

The considered  polynomials  build  an orthogonal  system  with respect  to the inner  

product  

                                  < f , g >w  = ∫-1

+1
f (x) g (x)   1 - x2  ⅆx  

with the weight  function  w(x)=1/  1 - x2 , considered  for all real-valued  functions  f 

and g on [-1,1]  for which  < f , f >w  = || f ||2w and < g , g >w = || g ||2w exist.  As usual  

we identify  functions  f and g with || f - g ||w = 0 and denote  the vector  space  of the accord -

ing equivalence  classes  as Hilbert  space  H = Lw
2([-1,1]). The Chebyshev  polynomials  

T[n,x] build  a complete  orthogonal  system  in that space.  We show  the first  3 of them  

in unnormalized  form.  

In[  ]:= T0 = ChebyshevT [0, x]

T1 = ChebyshevT [1, x]

T2 = ChebyshevT [2, x]

Out[  ]= 1

Out[  ]= x

Out[  ]= -1 + 2 x2

Now with according  norming  so that || T [n, x] ||w=1, here  for n=0,1,2.
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In[  ]:= T0n[x_] = ChebyshevT [0, x] / Sqrt[Pi]

T1n[x_] = Sqrt[2 / Pi] ChebyshevT [1, x]

T2n[x_] = Sqrt[2 / Pi] ChebyshevT [2, x]

Out[  ]=

1

π

Out[  ]=

2

π x

Out[  ]=

2

π
-1 +2 x2

By definition  of the Chebyshev  polynomials,  a series  expansion  of an element  f in 

H = Lw
2([-1,1]) is just the Fourier  series  expansion  of the 2π-periodic even  function  

f(cos(ϕ)).  The corresponding  series  converges  in the norm  of H and even  uniformly  for 

continuously  differentiable  f as we know  from  the theory  of Fourier  series.  Thus,  the 

coefficients  of the expansions  

  (1)                              f(x) = 
a0

2
T[0,x]  +∑k=1

∞ ak T [k , x]   

are just the Fourier  coefficients  a0 / 2 and ak (k = 1, 2, ...) of f(cos(ϕ)).  

Example  17.  We consider  some  approximations  of the sign function  on [-1,1]  by 

Chebyshev  polynomials  and observe  the Gibbs  phenomenon  as known  from  Fourier  

series  expansions  near  a jump.  We plot the sign function  and partial  sums  up to 

T[5,x],  T[9,x]  und T[19,x].  We only  have  odd powers  in the polynomials,  because  sign 

is an odd function.  We compute  the coefficients  with the inner  product  < . , . >w  and 

as demonstration  also as Fourier  coefficients  of Sign[Cos[ϕ]].  We obtain  the same  

coefficients.    

In[  ]:= f[x_] = Sign[x]

a0half := Integrate [f[x] ChebyshevT [0, x] / Sqrt[1 - x ^ 2], {x, -1, 1}] / Pi;

(* of course zero since f is odd *)

Fca0half := 1 / Pi Integrate [f[Cos[phi]], {phi, 0, 2 Pi}];

(*computed as Fourier coefficient *)

ak[k_] := 2 / Pi Integrate [f[x] ChebyshevT [k, x] / Sqrt[1 - x ^ 2], {x, -1, 1}] ;

(*by inner product *)

Fcak [k_] := 2 / Pi Integrate [f[Cos[phi]] Cos[k phi], {phi, 0, Pi}];

(* as Fourier coefficient *)

Out[  ]= Sign[x]

A short  test that the same  coefficients  are computed .
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In[  ]:= a0half

ak[3] (* Coeff . zu T[3,x] *)

Fcak [3] (* same computed as Fourier coefficient of f(cos(ϕ) *)
Out[  ]= 0

Out[  ]= -
4

3 π

Out[  ]= -
4

3 π
Now the indicated  approximations  with 5, 9 and 19 Chebyshev  polynomials.  The 

coefficients  computed  differently,  in the last case by numerical  integration.  

In[  ]:= fct2[t_] = Sum[Fcak [k] ChebyshevT [k, t], {k, 1, 5}]

(* Näherung mit Polynomgrad 5 *)

Simplify [N[%]] (* hier numerisch *)

fct3[t_] = Sum[ak[k] ChebyshevT [k, t], {k, 1, 9}]

(* Näherung mit Polynomgrad 9 *)

Simplify [N[%]]

fct4[t_] = Simplify [N[2 / Pi] × Sum[

NIntegrate [f[Cos[x]] Cos[n x], {x, 0, Pi}] ChebyshevT [n, t], {n, 1, 19, 2}]] ;

Out[  ]=

4 t

π -
4 × -3 t + 4 t3

3 π +
4 × 5 t - 20 t3 + 16 t5

5 π
Out[  ]= 3.81972 t - 6.79061 t3 + 4.07437 t5

Out[  ]=

4 t

π -
4 × -3 t + 4 t3

3 π +
4 × 5 t - 20 t3 + 16 t5

5 π -

4 × -7 t + 56 t3 - 112 t5 + 64 t7
7 π +

4 × 9 t - 120 t3 + 432 t5 - 576 t7 + 256 t9
9 π

Out[  ]= 6.3662 t - 33.9531 t3 + 85.5617 t5 - 93.1284 t7 + 36.2166 t9

Below  the plot  of the approximations  showing  the Gibbs  phenomenon
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In[  ]:= g1 := Plot[f[t], {t, -1, 1}, Frame → True,

FrameStyle → Directive [Black , FontSize → 15,

FontWeight → Plain ],

PlotStyle → {GrayLevel [0.0], Thickness [0.005 ]}]

g2 := Plot[fct2[t], {t, -1, 1}, Frame → True,

FrameStyle → Directive [Black , FontSize → 15, FontWeight → Plain ],

PlotStyle → {GrayLevel [0.0], Dashing [0.01], Thickness [0.005 ]}]

g3 := Plot[fct3[t], {t, -1, 1}, Frame → True,

FrameStyle → Directive [Black , FontSize → 15, FontWeight → Plain ],

PlotStyle → {GrayLevel [0.0], Dashing [0.02], Thickness [0.005 ]}]

g4 := Plot[fct4[t], {t, -1, 1}, Frame → True,

FrameStyle → Directive [Black , FontSize → 15, FontWeight → Plain ],

PlotStyle → {GrayLevel [0.0], Thickness [0.005 ]}]

In[  ]:= Show [g1, g2, g3, g4, PlotRange → All ]

Out[  ]=

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Comparison with interpolation by Legendre polynomials for sin(3x)

We had already  shown  before  interpolation  by Legendre  polynomials.  We compare  

that with  interpolation  by Chebyshev  polynomials  and show  the respective  error  

curves.  We see that the error  by Chebyshev  interpolation  near  to the boundary  points  

-1,1 is much  less than by Legendre  interpolation,  which  is due to the weight  function  

in the space  H.  

In[  ]:= coeff1 [n_] := NIntegrate [LegendreP [n, x] Sin[3 x], {x, -1, 1}];

n2[x_] = Expand [Sum[coeff1 [n] LegendreP [n, x] / (2 / (2 n + 1)), {n, 0, 5}]]

(* Legendre interpolation polynomial *)

Out[  ]= 0. + 2.97177 x - 4.23916 x3 + 1.42043 x5

In[  ]:= f[x_] := Sin[3 x]

n3[x_] = Simplify [

N[2 / Pi Sum[Integrate [f[Cos[phi]] Cos[n phi], {phi, 0, Pi}] ChebyshevT [n, x],

{n, 1, 5}]] ]

Out[  ]= 2.96278 x - 4.19364 x3 + 1.37691 x5
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In[  ]:=

p1 = Plot[f[x], {x, -1, 1},

PlotStyle → Directive [Blue, Thickness [0.005 ]], PlotRange → All,

PlotStyle → Directive [Blue, Thickness [0.005 ]], PlotRange → All];

In[  ]:= p3 = Plot[n3[x] + 0.05, {x, -1, 1},

PlotStyle → Directive [Red, Thickness [0.005 ]], PlotRange → All, PlotLegends →
Placed [{"Approximation by a Chebyshev Polynomial of Degree 5

shown in Red with offset +0.005 for better visibility "}, Above ]];

Show [p1, p3]

Out[  ]=

Approximation by a Chebyshev Polynomial of Degree 5

shown in Red with offset +0.005 for better visibility

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

In[  ]:= p4 := Plot[Abs[Sin[3 x] - n2[x]], {x, -1, 1},

PlotStyle → Directive [Blue, Thickness [0.005 ]], PlotRange → All]

p5 := Plot[Abs[Sin[3 x] - n3[x]], {x, -1, 1}, PlotLegends →
Placed [{"Approximation Errors by a Chebyshev Polynomial of Degree 5

shown in Red versus Legendre Interpolation in Blue"}, Above ],

PlotStyle → Directive [Red, Thickness [0.005 ]], PlotRange → All]

Below  the errors  of Legendre  versus  Chebyshev  interpolation

The Chebyshev  interpolation  in red has greater  errors  in the interior  of [-1,1],  but is 

much  better  at the boundary.  This  is an effect  of the used  weight  function  in the inner  

product,  which  punishes  errors  at the boundary  with greater  norm.  

Chapter 3  Discrete Fourier Transforms 107



In[  ]:= Show [p4, p5]

Out[  ]=

Approximation Errors by a Chebyshev Polynomial of Degree 5

shown in Red versus Legendre Interpolation in Blue

-1.0 -0.5 0.5 1.0

0.002

0.004

0.006

0.008

0.010

0.012

Connection  with  DCT  I and DCT  II, Example  of C. Runge

In technical  signal  processing  one often  has the task to compute  trigonometric  or 

polynomial  approximations  for a function  from  samples  of a continuous  signal.  Then,  

with the coefficients  of an interpolation  function  the approximation  is given  by only  a 

few numbers,  which  can be processed.  (Computers  can only  process  numbers  and 

not continuous  functions.)  

Since  Chebyshev  polynomials  are closely  connected  with Fourier  series  expansions,  

we have  the possibility  to find polynomial  interpolations  with the help of a DCT I or a 

DCT II. Then,  the Fourier  coefficients  from  above  are replaced  through  their  DCT 

coefficients  computed  from  samples  of a function.  From  our knowledge  of the DFT it 

is obvious  that alias  effects  must  be observed.  We treat  this somewhat  later  below.  

In the following  we consider  continuous,  piecewise  continuously  differentiable  func-

tions  f on [-1,1].  By a parameter  transformation,  the results  can also be used  on other  

intervals.  This  is left to the reader.  One obtains  the following  interpolation  formulas  

(cf. [1], 6.6):

 

Interpolation  with  a DCT  I:

     With the m+1 (m ϵ ℕ ) interpolation  nodes  xn = cos(nπ/m), n=0,...,m  in [-1,1]   

     the polynomial

               P2,T (x) = C0+2 ∑k=1
m-1 Ck T[k,x]  + CmT[m,x]  

     is a real-valued  interpolation  polynomial  for f. The coefficients  Ck , k=0,..,m,  

     are obtained  by a DCT I  of the samples  f (xn), n=0,...,m.  
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Interpolation  with  a DCT  II and the so-called  Chebyshev  abscissa  xn:    

     With  the m+1 (m ϵ ℕ ) Chebyshev  interpolation  nodes  xn = cos((2n+1)π /(2m+2)), 

     n=0,...,m  in [-1,1],  i.e.,  with the zeros  of  T[m+1,x],   

                                                             P3,T (x) = A0 + ∑k=1
m Ak T [k, x]

     is a real-valued  interpolation  polynomial  for f. The coefficients  Ak , k=0,..,m,  

     are obtained  by a DCT II  of the samples  f (xn), n=0,...,m.  

We consider  again  the famous  example  of the Runge  function  f (x) = 1  1 + 25 x 2) 

on the interval  [-1,1].   

Polynomial  interpolations  for this example  with equidistant  nodes  yield  with increas -

ing number  of nodes  always  worse  approximations  for f, while  interpolation  with 

Chebyshev  nodes  yields  with increasing  numbers  of nodes  a sequence  of interpola -

tion polynomials  that converges  uniformly  to f.  

At first  the example  with 7 and 17 equidistant  nodes  as illustration  that these  are bad 

choices  for polynomial  approximations  to f.

In[  ]:= f[x_] := 1 / (1 + 25 x ^ 2) (* The Runge example *)

a := -1; b := 1; (* Interval [a,b]*)

X[m_, n_] := a + (b - a) m / n; Y[m_, n_] := f[X[m, n]];

(* n+1 nodes X and samples Y of f *)

Lagr[n_, k_, x_] := 
j=0

k-1
x - X[j, n]

X[k, n] - X[j, n]


j=k+1

n
x - X[j, n]

X[k, n] - X[j, n]
;

InterpolyLagrange [n_, x_] := 
k=0

n

Y[k, n] × Lagr[n, k, x];

(* The Lagrange Interpolation Polynomial *)

plot1 := Plot[f[x], {x, a, b}, PlotStyle → Directive [

Black , Thickness [0.005 ]],

PlotRange → All, PlotLegends → {"Runge function "}]

plot2 := Plot[InterpolyLagrange [7, x], {x, a, b}, PlotStyle → Directive [

Red, Thickness [0.005 ]], PlotRange → All, PlotLegends → {"7 equidistant nodes

plot3 := Plot[InterpolyLagrange [17, x] + 0.1, {x, a, b}, PlotStyle → Directive [

Blue, Thickness [0.005 ]],

PlotRange → All, PlotLegends → {"17 equidistant nodes

with offset +0.1"}]
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In[  ]:= Show [plot1, plot2, plot3 ]

Out[  ]=

-1.0 -0.5 0.5 1.0

-4

-3

-2

-1

1

Runge function

7 equidistant nodes

17 equidistant nodes

with offset +0.1

Instead,  Interpolation  with  Chebyshev  Polynomials  

First  with  a DCT I. We use the Mathematica  version  of the DCT I. 

You must  observe  that for the Mathematica-DCT  compared  to my notation  here  and 

in [1] the scaling  factor  has to be adjusted.  Here  as prefactor  1/ 2 m , if we use m+1 

samples  of f in [-1,1],  or in other  words  m+1 samples  of f(cos(ϕ))  for ϕ ϵ [0,π]. I have  

preferred  the scaling  factor  so that the DCT coefficients  correspond  to the amplitudes  

of the oscillations  in the approximations.  

(Hint:  If you use implemented  routines  for a DFT (FFT),  DCT in a program,  test the 

norming  factors  by simply  treating  a cosine  with the routines.  This  can easily  prevent  

unpleasant  surprises.)

We choose  for the example  17 equidistant  nodes  in [0,π], starting  at zero,  and the 

according  samples  of f(cos(ϕ)):

In[  ]:= m := 16; (* because numbering starts with zero *)

list1 := Table [f[Cos[ n π /m]], {n, 0, m}]

Now the DCT I of Mathematica  with the right  factor.  Each  second  coefficient  is zero 

according  to the symmetry  of f. We see the graphics  of f (black)  and its approximation  

(red)  
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In[  ]:= coeff = 1 / Sqrt[2 m] FourierDCT [list1, 1];

InterpolyTscheb1 [x_] = Simplify coeff 〚1〛+

2 
k=2

m

coeff [[k]] ChebyshevT [k - 1, x] + coeff 〚m + 1〛 ChebyshevT [m, x]

plot4 := Plot[InterpolyTscheb1 [x], {x, a, b}, PlotStyle → Directive [

Red, Thickness [0.003 ]], PlotRange → All]

Show [plot1, plot4 ]

Out[  ]= 1. - 18.4579 x2 + 180.138 x4 - 931.478 x6 + 2718.63 x8 -

4638.33 x10 + 4585.72 x12 - 2433.11 x14 + 535.928 x16

Out[  ]=

-1.0 -0.5 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

Runge function

The same  game  with  a DCT  II. We use the Mathematica  version  of the DCT  II. 

Again  we have  to adjust  the norming  factor  in the DCT II of Mathematica,  here  the 

factor  1/ m + 1 . We compute  the interpolation  polynomial,  again  with m+1=17  

nodes  and plot it together  with the function  von C. Runge:

In[  ]:= list2 := Table [N[f[Cos[(2 n + 1) π / (2 m + 2)]]], {n, 0, m}]

(* Samples at the Chebyshev abscissa *)

coeff2 = N[1 / Sqrt[m + 1]] × Chop [FourierDCT [list2, 2] ]; (* DCT II of that list *)

In[  ]:= InterpolyTscheb2 [x_] = Simplify coeff2〚1〛+ 2 
k=2

m+1

coeff2〚k〛 ChebyshevT [k - 1, x]

(* resulting polynomial *)

Out[  ]= 1. - 19.192 x2 + 201.018 x4 - 1122.49 x6 + 3529.36 x8 -

6457.85 x10 + 6814.73 x12 - 3842.14 x14 + 895.603 x16
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In[  ]:= plot5 := Plot[InterpolyTscheb2 [x], {x, a, b}, PlotStyle → Directive [

Red, Thickness [0.003 ]], PlotRange → All]

Show [plot1, plot5 ]

Out[  ]=

-1.0 -0.5 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

Runge function

As expected  one can hardly  distinguish  both versions  by looking  at them.  Thus,  we 

show the corresponding  error  functions,  the error  by the DCT I in red,  by the DCT II 

in blue.  With  increasing  numbers  m of nodes  both interpolations  yield  also good  

approximations  considered  on the entire  interval  [-1,1],  which  finally  converge  uni-

formly  to f for m→∞.

The errors  of the both  interpolations

In[  ]:= plot6 := Plot[f[x] - InterpolyTscheb1 [x], {x, a, b}, PlotStyle → Directive [

Red, Thickness [0.005 ]], PlotRange → All,

PlotLegends → Placed [{"Error with DCT I, Red"}, Above ]]

plot7 := Plot[f[x] - InterpolyTscheb2 [x], {x, a, b}, PlotStyle → Directive [

Blue, Thickness [0.005 ]], PlotRange → All,

PlotLegends → Placed [{"Error with DCT II, Blue"}, Below ]]

Show [plot6, plot7 ]

Out[  ]=

Error with DCT I, Red

-1.0 -0.5 0.5 1.0

-0.03

-0.02

-0.01

0.01

0.02
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0.04

Error with DCT II, Blue
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The Alias  Effect  with  Chebyshev  Polynomials

Since  the considered  interpolations  by Chebshev polynomials  are closely  associated  

with the DCT,  it is obvious  that alias  effects  are involved  in the computation  of the 

coefficients  as iin the DFT and DCT.  As in a DFT with N samples  over  [0,T[  all values  

of the functions  exp(ⅈ  (k+mN)2πt/T)  conincide at the sampling  points  you cannot  

distinguish  values  of certain  Chebyshev  polynomials  at the interpolation  nodes.  From  

that point  of view one can the approximation  error  of the interpolation  polynomials  

see as a consequence  of alias  effects  in the polynomial  coefficients  and obtain  error  

estimates  from  that (see [8] for details).

For an illustration  we consider  the last case of an interpolation  with the Chebyshev  

abscissa  xn = cos ((π(2 n + 1) / (2 m + 2)), n = 0, ..., m. 

From  T [k , Cos[xn]] = Cos[k xn] one gets with some  computation  work  by the trigono -

metric  addition  theorems  that  

T[k,x]  and (-1 )l  T [l (2 m + 2 )±k,x]  for l ϵ ℕ coincide  on all nodes  xn. For a continuous  

function  f on [-1,1]  and its interpolation  polynomial  with m+1 Chebyshev  abscissa  as 

nodes  we obtain  with the interpolation  polynomial  P3,T (x) = A0 + ∑k=1
m Ak T [k , x]:

For the coefficients  Ak in P3,T  above  we have  the following  alias  relation:  

        For  l ϵ ℕ , k ϵ ℕ0, the  coefficients  ak  of   f(x)  = 
a0

2
T[0,x]  +∑k=1

∞ ak T [k, x]  

       and  the  m+1  Chebyshev  abscissa  as nodes  it holds  for  the  coefficients  Ak

       the  alias  relation          

                                     Ak = Ck(ak +∑l=1
∞ (-1)l ( al(2 m+2)+k + al(2 m+2)-k  ) 

We demonstrate  this effect  with  a simple  example.

Example  18.  We interpolate  f(x) = T[9,x]+2  T[10,x]  + 2 T[11,x]  +T[20,x]  +T[21,x]  with  5 

Chebyshev  abscissa  as nodes  in [-1,1].  The coefficients   

a10 = a11 = 2 und a20 = a21 = 1 yield by the alias  effect  with m=4 the interpolation  

polynomial  P3,T [x]=-T[0,x]-2T[1,x]=-1-2x,  because   

A0 =
1

2
× (-2 a10 + 2 a20) = -1 und A1 = -a11 - a9 + a21 = -2. We show  P3,T  and plot  

the polynomial  (red)  and f (blue).  

Of course  it is obvious  in advance  that the number  of nodes  and thus the degree  of the 

according  interpolation  polynomial  is by far not sufficient  to approximate  f with  that 

polynomial.   It is simply  demonstrated  what  finds  its way into the coefficients  Ak .
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f[x_] := ChebyshevT [9, x] + 2 ChebyshevT [10, x] +

2 ChebyshevT [11, x] + ChebyshevT [20, x] + ChebyshevT [21, x]

m := 4

list4 := Table [N[f[Cos[(2 n + 1) π / (2 m + 2)]]], {n, 0, m}]

(* samples at the Chebyshev abscissa *)

coeff3 := N[1 / Sqrt[m + 1]] × Chop [FourierDCT [list4, 2] ]

(* DCT II of the samples *)

InterpolyTscheb3 [x_] = Simplify coeff3〚1〛+ 2 
k=2

m+1

coeff3〚k〛 ChebyshevT [k - 1, x]

(* resulting polynomial *)

plot6 := Plot[f[x], {x, a, b}, PlotStyle → Directive [

Blue, Thickness [0.006 ]], PlotRange → All,

PlotLegends → Placed [{"The function f(x), Blue"}, Above ]]

plot7 := Plot[InterpolyTscheb3 [x], {x, a, b}, PlotStyle → Directive [

Red, Thickness [0.005 ]], PlotRange → All,

PlotLegends → Placed [{"The interpolation with 5 Chebyshev nodes

and Alias Effects , Red"}, Below ]]

Out[  ]= -1. - 2. x - 2.52051 × 10-9 x3

The coefficient  for x3 comes  from  errors  in the numerical  computation  of the DCT.

In[  ]:= Show [plot6, plot7 ]

Out[  ]=

The function f(x), Blue

-1.0 -0.5 0.5 1.0

-4

-2
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The interpolation with 5 Chebyshev nodes

and Alias Effects , Red
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One must  observe  such  effects,  when  one works  with samples  and interpolation  

polynomials  for example  in non-linear  equations  and wants  maybe  approximate  

terms  like a function  f 3 by a polynomial.  Thus,  you need  a sufficient  number  of sam-

ples for a good  approximation  of a function  f. If interested,  you can find error  esti-

mates  in [2]. 

Exercise. Derive  a corresponding  alias  relation  for the interpolation  with the nodes  

xn = cos (n π /m), n = 0, ..., m in [-1, 1] and test your  formula.

An Extremal  Property  of the Chebyshev  Polynomials

Finally  in that section  we will  illustrate  the following  extremal  property  of Chebyshev  

polynomials,  which  plays  a role in circuit  design  in electrical  engineering,  where  

Chebyshev  filters  are widely  used  due to their  damping  properties  outside  of the 

passband  of lowpass  filters.  It is proven  in [1], 6.7. 

It holds  the following  theorem:  

1. For every  x0  outside  of [-1,1]  the polynomial  T [n, x] / T [n, x0] has minimal  

     supremum  norm  compared  with all polynomials  P with degree  n and P(x0) = 1 .

2. Compared  with all polynomials  P of degree  n with |P(x)|⩽ 1 on [-1,1]  the Chebyshev  

     polynomial  T[n,x]  increases  fastest  outside  of [-1,1]  , i.e.,  there  holds  |T[n,x]|⩾ |P(x)|.      
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Example  19.  We consider  as last example  in that section  the graphs  of a Legendre  

polynomial  and a Chebyshev  polynomial  of the first  kind with equal  degrees  in [-4,4]  

and see the different  growth  in the complement  of [-1,1].   

In[  ]:= plot8 := Plot[LegendreP [6, x], {x, -4, 4}, PlotStyle → Directive [

Blue, Thickness [0.006 ]], PlotRange → All,

PlotLegends → Placed [{"Legendre Polynomial of Degree 6"}, Below ]]

plot9 := Plot[ChebyshevT [6, x], {x, -4, 4}, PlotStyle → Directive [

Red, Thickness [0.006 ]], PlotRange → All,

PlotLegends → Placed [{"Chebyshev Polynomial of Degree 6"}, Above ]]

Show [plot8, plot9 ]

Out[  ]=

Chebyshev Polynomial of Degree 6
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Legendre Polynomial of Degree 6
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4  The DCT 2D, JPEG, Huffman  Code

4.1  DCT-2D,  JPEG

We see how the DCT II is defined  for 2D signals  and apply  it to an example  from  

image  processing.  

For the definition  I have  simply  copied  the following  section  from  [1], 6.9

Out[  ]=

The DCT-2D  is widely  used  in image  processing,  for example  in image  compression.  

We consider  the case of the well-know  JPEG  compression  as example  and explore  

some  of its properties.  

In JPEG  compression  an image  is divided  into 8x8 or 16x16  pixel  blocks,  which  are 

transformed  with a DCT-2D.  The results  are quantized   per block.  This  is done  so that 

the according  DCT coefficients  of such  blocks  of a grayscale  matrix,  depending  on 

their  position  in the coefficient  matrix,  are divided  by accordingly  positioned  values  

of a so-called  luminance  table  and rounded  to integers.  The values  of the luminance

table  depend  on the desired  compression  ratio . In the following  example  such  a 

luminance  table  is shown  and used.



JPEG

An 8x8 Luminance  Table  for JPEG  

In[  ]:= qLum = {{16, 11, 10, 16, 24, 40, 51, 61},

{12, 12, 14, 19, 26, 58, 60, 55}, {14, 13, 16, 24, 40, 57, 69, 56},

{14, 17, 22, 29, 51, 87, 80, 62}, {18, 22, 37, 56, 68, 109, 103, 77},

{24, 35, 55, 64, 81, 104, 113, 92}, {49, 64, 78, 87, 103, 121, 120, 101},

{72, 92, 95, 98, 112, 100, 103, 99}}; qLum // MatrixForm

Out[  ]//MatrixForm=

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Since  the DCT coefficients  for higher  frequency  components  usually  decrease  rapidly  

and the divisors  of the table  for such  coefficients  increase,  one mostly  gets many  zeros  

in the high frequencies  as a result  of quantization.  These  quantized  spectral  data can 

be stored  or transmitted  in compressed  form  by entropy  encoding.  When  transmit -

ting a JPEG  image,  the used  encoding  method  (e.g.  Huffman  table,  not uniquely  deter -

mined)  is specified  in the file header  as necessary  information  for decoding.  At the 

viewer,  the data stream  is decoded  back  into the DCT matrix  and subjected  to IDC-

T-2D block  by block.  As a rule,  the IDCT  data  for the image  must  also be rendered  

again  if there  are values,  which  do not belong  to integers  in [0,255].  In color  images,  

the color  information  is quantized  analogously  with chrominance  tables.  The quantiza -

tion can lead to undesired  artifacts  in the neighborhood  of edges  in combination  with 

the Gibbs  phenomenon,  since  the IDCT  after  compression  usually  yields  a trigonomet -

ric interpolation  polynomial  different  from  that of the original  DCT data.  This  can be 

quickly  verified  by zooming  in on the edges  in a JPEG  image  as we will  see in the 

following  example.
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Example  20. We load  a test  image  and use the Mathematica  JPEG  algorithm  to 

analyze  some  effects.  

In[  ]:= testimage = Import ["/home /rolf /Desktop /MATHEMATICA -NEW /Testimage .bmp"]

Out[  ]=

In[  ]:= ImageDimensions [testimage ] (* Check Pixel numbers *)

imagedata = ImageData [ImageTake [testimage , {137, 144}, {257, 264}], "Byte"];

imagedata // MatrixForm

(* 8x8 Pixel Block at the edge of the rectangle upper left in byte form *)

Out[  ]= {960, 534}

Out[  ]//MatrixForm=

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 0 0 0 0 0 0

255 255 0 0 0 0 0 0

255 255 0 0 0 0 0 0

255 255 0 0 0 0 0 0

255 255 0 0 0 0 0 0
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In[  ]:= image2 = Image [imagedata , Magnification → 20, ImageSize → 150];

Show [image2 , Frame → True, FrameStyle → Black ]

(* Edge upper left of the rectangle . Shown are 8x8 Pixel *)

Out[  ]=

0 2 4 6 8
0

2

4

6

8

Below  the jpeg compressed  image  . On closer  inspection  one recognizes  artefacts at 

the boundaries  of the figures.  They  are caused  by aliasing  and the Gibbs  phenomenon  

in the DCT approximation.  Here  we use the jpeg compression  implemented  in Mathe -

matica.  Below  we do this ourselves  to see better  what’s  going  on. 

In[  ]:= Export ["testimage .jpeg", testimage ,

ColorSpace → "Grayscale ", "CompressionLevel " → 1.0];

testimagejpeg = Import ["testimage .jpeg"]

(* Size of originally 512 KB compressed to 9 KB *)

Out[  ]=

We look again  at the left upper  edge  of the rectangle
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In[  ]:= image3data = ImageData [ImageTake [testimagejpeg , {137, 144}, {257, 264}], "Byte"];

image3data // MatrixForm (*The same section as above ,

now from the new image data matrix . The changes are obvious .*)

image3 = Image [image3data , "Byte", ImageSize → 150] ;

Show [image3 , Frame → True, FrameStyle → Black ]
Out[  ]//MatrixForm=

255 255 248 255 255 255 250 190

255 255 255 255 255 255 255 208

255 255 200 194 223 228 185 136

225 149 67 41 61 69 38 0

219 127 19 0 0 0 0 0

255 194 62 0 0 11 3 0

255 212 62 0 0 0 0 0

255 164 5 0 0 0 0 0

Out[  ]=

0 2 4 6 8
0

2

4

6

8

Analogously  music  is distorted,  if it is saved  compressed  as MP3 files.  The edges  of an 

image  correspond  in acoustics  major  changes  in the dynamic  of a music  piece.  Delet -

ing of small  DCT coefficients  - mostly  corresponding  to high frequencies  - diminishes  

the bandwidth  and cancels  overtones.  Let’s  do the compression  ourselves  for the 

considered  8x8 block.
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In[  ]:= dctblock = FourierDCT [imagedata ]; dctblock // MatrixForm (* DCT of the block*)

jpegblock =

Table [Sign[dctblock 〚i, j〛] Floor [Abs[dctblock 〚i, j〛 / qLum〚i, j〛]], {i, 1, 8}, {j, 1, 8}];

jpegblock // MatrixForm (* The resulting data for the JPEG format -

now with many zeros . Rounded to zero direction *)

Out[  ]//MatrixForm=

1083.75 288.828 208.233 101.423 0. -67.7686 -86.2531 -57.4515

452.847 -136.779 -98.6121 -48.0304 0. 32.0929 40.8465 27.207

176.692 -53.3685 -38.4765 -18.7405 0. 12.522 15.9375 10.6157

-65.8676 19.8948 14.3434 6.98613 0. -4.66799 -5.94122 -3.95733

-135.234 40.8465 29.4487 14.3434 0. -9.58393 -12.198 -8.12487

-44.0114 13.2933 9.58393 4.66799 0. -3.11905 -3.9698 -2.6442

73.1882 -22.1059 -15.9375 -7.76258 0. 5.18679 6.60153 4.39715

90.0768 -27.207 -19.6152 -9.55383 0. 6.38367 8.12487 5.41181

Out[  ]//MatrixForm=

67 26 20 6 0 -1 -1 0

37 -11 -7 -2 0 0 0 0

12 -4 -2 0 0 0 0 0

-4 1 0 0 0 0 0 0

-7 1 0 0 0 0 0 0

-1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

The data in a segment  of a JPEG  file are thus  DCT  coefficients . Thus,  the viewer  

always  needs  a program  (browser,  image  viewer)  that generates  by a IDCT  again  an 

image  from  the data  - hopefully  in realtime.   The decoder  program  therefore  must  

know  for reconstruction  the used  luminance  table,  which  is transmitted  in a JPEG  file 

(there  in segment  FF DB).  

The DCT data  are usually  stored  and transmitted  with a Huffman  code .  Only  with 

that coding  of the data,  which  now as rule contain  many  zeros,  a data  compression  is 

achieved.  A Huffman  code  is not uniquely  determined  as we will  see below.  In the 

header  of each  JPEG  file - in segment  FF C4 (DHT  "Definition  of Huffman  Table")  - is 

defined,  which  Huffman  code  was used  for the data.  Each  viewer  program  must  then 

generate  per image  block  the corresponding  code  table  to correctly  decode  it. 
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Image  reconstruction

For image  reconstruction  it is requantized with the same  luminance  table,  i.e.,  the 

elements  of the last matrix  above  are multiplied  per element  with the coefficients  of 

the luminance  matrix.  We proceed  with the data block  above.  

In[  ]:= blockrequant = Table [jpegblock qLum ];

blockrequant // MatrixForm (* compare with the matrix dctblock above *)

imagesection = FourierDCT [blockrequant , 3];

imagesection // MatrixForm (* Result after backwards transform *)
Out[  ]//MatrixForm=

1072 286 200 96 0 -40 -51 0

444 -132 -98 -38 0 0 0 0

168 -52 -32 0 0 0 0 0

-56 17 0 0 0 0 0 0

-126 22 0 0 0 0 0 0

-24 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0

72 0 0 0 0 0 0 0

Out[  ]//MatrixForm=

232.424 266.247 237.206 257.599 281.129 254.306 252.728 239.335

248.509 270.827 227.428 240.51 267.331 250.489 259.007 251.401

296.274 294.574 218.665 208.702 229.084 217.085 232.532 228.796

216.537 185.044 67.8716 26.0159 31.7552 16.3546 30.8313 25.7937

261.305 206.599 59.2583 -2.47993 -2.23629 -16.8252 -3.25102 -10.8073

274.018 207.74 48.739 -14.1592 -5.43848 -11.4411 4.25628 -5.12619

279.142 208.043 46.2578 -12.0838 5.72693 5.65908 20.5211 7.69597

270.516 196.841 33.1335 -24.2175 -4.27453 -4.80511 6.07901 -10.7755

We see the mentioned  alias  and Gibbs  effect  with  real  values  outside  of the greyscale  

with integers  from  zero to 255.

Thus,  the image  must  be rastered again . We do this ourselves  by replacing  negative  

values  by zero,  those  greater  than 255 by 255,  and otherwise  we round  off.  Afterwards  

we look at the result.
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In[  ]:= imageraster1 = Table [Max [{imagesection 〚i, j〛, 0}], {i, 1, 8}, {j, 1, 8}];

imageraster = Table [Floor [Min[{imageraster1 〚i, j〛, 255}]], {i, 1, 8}, {j, 1, 8}];

imageraster // MatrixForm

Out[  ]//MatrixForm=

232 255 237 255 255 254 252 239

248 255 227 240 255 250 255 251

255 255 218 208 229 217 232 228

216 185 67 26 31 16 30 25

255 206 59 0 0 0 0 0

255 207 48 0 0 0 4 0

255 208 46 0 5 5 20 7

255 196 33 0 0 0 6 0

In[  ]:= jpegimageresult = Image [imageraster , "Byte"] ;

Show [jpegimageresult , Frame → True, FrameStyle → Black ]

Out[  ]=

0 2 4 6 8
0

2

4

6

8
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4.2  Huffman   Coding

Even if it is not actual  Fourier  analysis,  but closely  connected  with its everyday  use in 

image  processing,  we finally  explain  for our example  how a possible  Huffman  code  for 

the elements  in our 8x8-Matrix  jpegblock above  is generated.  For simplicity,  we do 

not use rearrangement  or run lengths.  Only  the principle  of Huffman  coding  is 

explained.

At first  we flatten  our 8x8-Matrix  jpegblock above.  The resulting  list has 64 elements.

In[  ]:= data = Flatten [jpegblock ]

Out[  ]= {67, 26, 20, 6, 0, -1, -1, 0, 37, -11, -7, -2, 0, 0, 0, 0, 12,

-4, -2, 0, 0, 0, 0, 0, -4, 1, 0, 0, 0, 0, 0, 0, -7, 1, 0, 0, 0, 0, 0, 0,

-1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}

Huffman  coding  is done  in 3 steps,  the decoding  in one step.

1) At first  a character  frequency  table  of the coefficients  in the list is generated.  The 

result  contains  the coefficients  with  increasing  frequency,  in the example  for instance  

{2,-7}  as list element,  because  -7 appears  two times  in the coefficient  matrix.  Here  the 

used function  and the result  for that:        

In[  ]:= getCharFreqTable [data_List ] := Sort[{Count [Flatten [# & /@ data], #〚1〛], #〚1〛} & /@

Transpose [{Union [Flatten [# & /@ data]]}]];

getCharFreqTable [

data]

Out[  ]= {{1, -11}, {1, 6}, {1, 12}, {1, 20}, {1, 26}, {1, 37},

{1, 67}, {2, -7}, {2, -4}, {2, -2}, {3, -1}, {4, 1}, {44, 0}}

2) From  that list a Huffman  tree is generated  in which  nodes  and edges  are repre -

sented  by a binary  string.  There  are always  exactly  2 paths  that we can choose  from  a 

node to a leaf or another  node.  These  are represented  by a 1 or a 0. The optimal  tree 

structure  is achieved  by recursion  (reduction),  which  processes  the coefficients  based  

on their  respective  frequency.   

In[  ]:= getHuffmanTree [data_List ] :=

Nest[Sort[Delete [ReplacePart [#, {Plus @@ (Transpose [Take[#, {1, 2}]]〚1〛),

Take[#, {1, 2}]}, {1}], {2}]] &,

getCharFreqTable [data], Length [getCharFreqTable [data]] - 1]〚1, 2〛

This function  works  as follows:

The process  starts  by placing  the first  two coefficients  of the ordered  frequency  table  

above  into a character  set under  a node.  The frequency  of this character  set is then 

defined  as the sum of the frequencies  of the characters  it contains.  In the example  

with {1,-11}  and {1,6},  2 is the sum of the two frequencies  in these  elements.  
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Example:

In[  ]:= {Plus @@ (Transpose [Take[#, {1, 2}]]〚1〛), Take[#, {1, 2}]} &@getCharFreqTable [data]

Out[  ]= {2, {{1, -11}, {1, 6}}}

The result  then replaces  the first  two entries  in the freqency table.  In the example:  

In[  ]:= (Delete [ReplacePart [#, {Plus @@ (Transpose [Take[#, {1, 2}]]〚1〛), Take[#, {1, 2}]},

{1}], {2}] &@getCharFreqTable [data])

Out[  ]= {{2, {{1, -11}, {1, 6}}}, {1, 12}, {1, 20}, {1, 26}, {1, 37},

{1, 67}, {2, -7}, {2, -4}, {2, -2}, {3, -1}, {4, 1}, {44, 0}}

Now it is again  sorted  with increasing  frequencies  :  

In[  ]:= (Sort[Delete [ReplacePart [#, {Plus @@ (Transpose [Take[#, {1, 2}]]〚1〛),

Take[#, {1, 2}]}, {1}], {2}]] &@getCharFreqTable [data])

Out[  ]= {{1, 12}, {1, 20}, {1, 26}, {1, 37}, {1, 67}, {2, -7},

{2, -4}, {2, -2}, {2, {{1, -11}, {1, 6}}}, {3, -1}, {4, 1}, {44, 0}}

This process  is continued  by placing  the first  two resulting  entries,  whether  a single  

coefficient  or a group  of coefficients,  under  a node.  

The recursion  ends  with the full  Huffman  tree,  here  in the form  of a “nested  list”,  

which  we call  “hTree”.   

In[  ]:= hTree = getHuffmanTree [data]

Out[  ]= {{20, {{8, {{4, {{2, -4}, {2, -2}}}, {4, {{2, {{1, -11}, {1, 6}}}, {2, {{1, 12}, {1, 20}}}}}}},

{12, {{5, {{2, {{1, 26}, {1, 37}}}, {3, -1}}},

{7, {{3, {{1, 67}, {2, -7}}}, {4, 1}}}}}}}, {44, 0}}

3) Below  is how to generate  a Huffman  code  from  this:

The code  of a character  in our data  is uniquely  determined  by its position  in hTree.  

From  the positions  of the characters  we generate  code  words  and thus a “code  list”  

analogous  to “data”.  We then output  the bit stream  that encodes  the entire  list.  You 

can see that data  elements  receive  shorter  code  words  the greater  their  frequency  in 

the list to be list to be encoded.  (Task:  Analyze  the two following  functions).  Below  the

resulting  bitstream  that encodes  the example.
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In[  ]:= encodeChar [c_, tree_List ] := (list = Flatten [Position [tree, {_, c}]];

b = Table [ToString [list〚i〛- 1], {i, 1, Length [list], 2}];

StringJoin [b])

encode [charlist_ , tree_] :=

Table [encodeChar [charlist 〚n〛, tree], {n, Length [charlist ]}]

codelist = encode [data, hTree ]

bitstream = {StringJoin [codelist ]}

StringLength [bitstream 〚1〛]

Out[  ]= {01100 , 01000 , 00111 , 00101 , 1, 0101, 0101, 1, 01001 , 00100 , 01101 , 0001, 1, 1, 1, 1,

00110 , 0000, 0001, 1, 1, 1, 1, 1, 0000, 0111, 1, 1, 1, 1, 1, 1, 01101 , 0111, 1, 1, 1,

1, 1, 1, 0101, 1, 1, 1, 1, 1, 1, 1, 0111, 1, 1, 1, 1, 1, 1, 1, 0111, 1, 1, 1, 1, 1, 1, 1}

Out[  ]= {01100010000011100101101010101101001001000110100011111001100000000111111

00000111111111011010111111111010111111110111111111101111111111 }

Out[  ]= 133

A quick  recalculation  shows  : Encoding  the 64 numbers  as 8 - bit words  would  require  

512 bits . Coding  as above  would  require  a bit stream  with a length  of only  133 bits,  i. 

e., would  only  use about  1/4 of the previous  memory  space . A more  clever  arrange -

ment  according  to a zigzag  pattern  as mentioned  above  and representation  of the 

resulting  terminating  sequence  with 35 zeros  by a single  code  word  would  save 

another  26 % . 

The CCITT  coding  uses  de facto Difference  Coding,  one zigzag  pattern  per block  and 

run-length  code  .

Mathematica  offers  an implemeted command  TreeForm  for a plot a the correspond -

ing tree.
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In[  ]:= TreeForm [hTree ]

Out[  ]//TreeForm=

List

List

20List

List

8 List

List

4 List

List

2 -4

List

2 -2

List

4 List

List

2 List

List

1 -11

List

1 6

List

2 List

List

1 12

List

1 20

List

12List

List

5 List

List

2 List

List

1 26

List

1 37

List

3 -1

List

7 List

List

3 List

List

1 67

List

2 -7

List

4 1

List

44 0

Now the Decoding

We first  generate  a list that shows  the assignment  of the matrix  coefficients  and their  

code words  in pairs.  We call  the list "translationTable".  

Then - programmed  as a loop - we process  the bitstream  by combining  characters  of 

the 0-1 sequence  with the StringTake  command  until  we find the first  code  word  in 

translationTable.  It is in the second  component  of a hit.  Then  we assign  the first  com-

ponent  of this hit - the encoded  character  - to the result  component  "result[[1]]"  and 

delete  the decoded  bit sequence  from  'stream'  using  StringDrop.  The procedure  is 

then repeated  in a loop until  all entries  "result[[n]]"  are available  for all n, 1⩽n⩽64.  
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In[  ]:= huffmanTable [data_List , code_List ] := Table [{data〚i〛, code〚i〛}, {i, Length [data]}]

translationTable = Union [huffmanTable [data, codelist ]]

result = Table [NULL , {n, 64}];

stream = bitstream ;

Out[  ]= {{-11, 00100 }, {-7, 01101 }, {-4, 0000}, {-2, 0001}, {-1, 0101}, {0, 1}, {1, 0111},

{6, 00101 }, {12, 00110 }, {20, 00111 }, {26, 01000 }, {37, 01001 }, {67, 01100 }}

In[  ]:= For[n = 1, n ≤ 64, n++,

For[m = 1, m ≤ 64 && result〚n〛 ⩵ NULL , m++,

( a := StringTake [stream , m];

If[MemberQ [translationTable , {_, a〚1〛}],

(b := Position [translationTable , {_, a〚1〛}];

result〚n〛 = translationTable 〚b〚1〛〛〚1〛〚1〛;

stream = StringDrop [stream , m];)] )]]

ArrayReshape [result , {8, 8}] // MatrixForm

Out[  ]//MatrixForm=

67 26 20 6 0 -1 -1 0

37 -11 -7 -2 0 0 0 0

12 -4 -2 0 0 0 0 0

-4 1 0 0 0 0 0 0

-7 1 0 0 0 0 0 0

-1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

In[  ]:=

Above,  the encoded  and again  re-decoded  matrix,  and below  for comparison  the 

matrix   jpegblock from  p. 122 to check  that  everything  worked  well.

In[  ]:= jpegblock // MatrixForm

Out[  ]//MatrixForm=

67 26 20 6 0 -1 -1 0

37 -11 -7 -2 0 0 0 0

12 -4 -2 0 0 0 0 0

-4 1 0 0 0 0 0 0

-7 1 0 0 0 0 0 0

-1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
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