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Abstract This note exposes the mathematical setting of initial value prob-
lems for causal time-invariant linear systems, given by ordinary differential
equations within the framework of generalized functions. We show the struc-
ture of the unique solutions for such equations, and apply it to problems
with causal or persistent inputs using time-domain methods and general-
ized Laplace and Fourier transforms. In particular, we correct a widespread
inconsistency in the use of the Laplace transform.
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1 Introduction

Initial value problems for linear transfer systems in control and systems the-
ory are often given by linear differential equations with constant coefficients
and terms that contain derivatives of the input. A generalized functions
approach is widely used and mathematically adequate. Recent publications
(cf. [1]-[2] and references therein) show that a key issue is the mathematical
modelling of the system in question and the treatment of the initial point.
The purpose of this contribution is — referring to the work of L. Schwartz
(1957) and A.H. Zemanian (1965) — to point out how linear initial value
problems with constant coefficients for causal systems can be formulated and
solved within the framework of generalized functions in the time-domain and
correspondingly in the frequency domain. We discuss system models with
causal inputs f , i.e. inputs supported on [0,∞[, and with persistent inputs
related to a question raised in [1] for suitable transform methods in that
case.
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An immediate consequence is the solution with Laplace or Fourier trans-
forms. We observe that for generalized functions f in a series of standard
textbooks (see for example [3] - [7]), in numerous course lectures on control
and linear systems theory as well as in [2] a modified right-sided Laplace
transform, denoted by L− and formally defined by

L−(f) =
∫ ∞

0−
f(t) e−st dt,

is used, so that the generalized derivative f ′ of a transformable function f
with a jump discontinuity at t0 = 0 has the transform

L−(f ′)(s) = sL−(f)(s) − f(0−). (1)

Differently from the usual right-sided Laplace transform L (cf. Section 4),
which operates on generalized functions with support in the nonnegative
half-line, this L− transform and equation (1) are used for functions f with
possibly nonzero left-sided limits f(0−). Logically the support of such func-
tions must intersect the negative half-line. As a consequence, the L− trans-
form does not fulfill the convolution theorem, a given transform L−(f ′) does
not yield a unique primitive f for f ′ as L(f ′) does, and L− is not even in-
vertible on generalized functions with a support intersecting the negatives.
There are “significant confusions present in many of the standard textbook
presentations of this subject” (cf. [2]). In the article of Lundberg et al. [2]
with the subtitle “Troubles at the origin” the reader can find an extensive
discussion of that confusion in otherwise excellent literature.

We propose to use only the Laplace transformL as introduced by A.H. Ze-
manian [8] and L. Schwartz [9], which operates on generalized functions with
support in the nonnegative half-line and provides the convolution theorem
and well-known correspondence tables. We emphasize that the adequate
time-domain model of the initial value problem yields consistent Laplace or
Fourier transforms (see Section 4).

For a sufficiently general treatment of usual signals as generalized func-
tions we point the reader to [2] or [10]. The necessary mathematical back-
ground is exposed there briefly and elementary enough to be presented in
standard courses on engineering mathematics.

2 Causal initial value problems with generalized input in the time-domain

In the sequel we will study the following linear differential equation with
constant coefficients

P (D) y = Q(D) f (2)

for D = d/ dt, polynomials P (λ) =

n∑
k=0

akλ
k (an �= 0) and Q(λ) =

m∑
k=0

bkλ
k.

It is considered to be an equation in the space D′ of generalized functions
on R.
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When we model by equation (2) a transfer system with given input f and
y as output solution to the equation, we have to impose further conditions
on the nature of the system and the type of the input, and conditions that
determine a unique solution y of (2) as corresponding system output. First,
we assume that the system is causal, i.e. an input f to the initially-at-rest
system with support in [t0,∞[ generates a system output y with support
in [t0,∞[. For convenience, an input f is assumed similar to [1] and [2] to
be a superposition f = fr + fg of a function fr ∈ Cm(R) and a generalized
function fg ∈ D′

+. Here Cm(R) denotes the space of m-times continuously
differentiable functions on R, D′

+ the space of generalized functions with
support in [0,∞[. We set the initial point t0 = 0, prescribe initial conditions
of the form y(k)(0−) = lim

t→0,t<0
y(k)(t) = ck, k = 0, . . . , n − 1, and extend

the classical setting of the initial value problem as follows.

Definition 1 A causal initial value problem for the differential equation (2)
in D′ with f = fr + fg, fr ∈ Cm(R), fg ∈ D′

+, is to find a generalized
function y ∈ D′, which satisfies the following conditions:

(i) The generalized function y solves the inhomogeneous equation in D′.
(ii) For t < 0 the generalized function y coincides with the solution z of the

equation P (D)y = Q(D)fr, which has given values z(k)(0) = ck of the
k-th derivatives z(k) (k = 0 . . . n− 1).

The following extension of the classical result is probably well-known
to the workers in the field. Since we could not trace either a proof nor
the statement in the literature, we add a proof that shows the structure
of the solution for the initial value problem. As usual δ denotes the Dirac
distribution.

Theorem 1 The solution of the causal initial value problem for equation (2)
and an input f = fr + fg with fr ∈ Cm(R), fg ∈ D′

+ is unique and has the
form

y = g ∗Q(D)fg + z. (3)

Here g is the causal fundamental solution of P (D)y = δ, g ∗Q(D)fg is the
convolution of g with the generalized function Q(D)fg, and z is the classical
solution of the equation P (D)y = Q(D)fr, which satisfies the conditions
z(k)(0) = ck. The solution y then fulfills y(k)(0−) = ck (0 ≤ k ≤ n− 1).

Proof Since the difference of two solutions solves the homogeneous equa-
tion for zero initial conditions, a solution is unique and independent of the
representation of the superposition f = fr + fg. The causal fundamental
solution g is given by g = vu with the unit step function u and that solu-
tion v of P (D)y = 0, which satisfies v(0) = v′(0) = . . . = v(n−2)(0) = 0,
v(n−1)(0) = 1/an (cf. [8] or [9]). Its convolution with Q(D)fg represents the
unique causal solution corresponding to the input fg for the initially-at-rest
system. By linearity and the regularity condition on fr, the function z adds
the unique classical solution of P (D)y = Q(D)fr establishing the required
initial conditions. ��
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Remark 1 Theorem 1 shows that the unique causal solution as defined in
Definition 1 has its support in [t0,∞[, when the system is initially at rest
and the input has its support in [t0,∞[.

Example 1 For initially-at-rest conditions the equation y(3)+ y′ = δ has the
unique causal solution y(t) = (1− cos(t))u(t) with the unit step function u.
It also has a non-causal solution w(t) = y(t) + cos(t)− 1 fulfilling w(0+) =
w′(0+) = w′′(0+) = 0, but w′′(0−) = −1. Thus, condition (ii) in Definition
1 determines the causal solution as system output with an initial state
established by the signal history for t < 0.

Example 2 (cf. [1]) Consider the differential equation

dy

dt
+ 2y = 3

df

dt
+ 5f (4)

with f(t) = 3u(t) − 1, u the unit step function. Its causal fundamental
solution is g(t) = e−2t u(t). For the initial value y(0−) = −5/2 the solution
on R according to (3) is

y(t) = g ∗ (9δ + 15u)(t)− 5

2
=

(
3

2
e−2t +

15

2

)
u(t)− 5

2
. (5)

3 Problems on half-lines

In application problems we are often interested in predicting the system
evolution for t ≥ t0, when the system has given initial values at the time
t0. Assuming for simplicity that all input starts at t0 = 0 and considering
only the half-line t ≥ 0, we do not concern ourselves with exactly how the
initial conditions are established in a real world system. Mathematically we
can assume that the initial values are established by a suitable solution z
of the corresponding homogeneous equation. To extend the classical results
we ask for a generalized function T with support in [0,∞[, which coincides
for m-times continuously differentiable input functions f with the classical
solution of the initial value problem on the half-line t > 0.

Theorem 2 (i) For f ∈ D′
+ the generalized function T = g ∗Q(D)f + zu is

the unique causal solution of the distributional equation

P (D)y = Q(D)f +
n∑

k=1

ak

(
k−1∑
q=0

cqδ
(k−1−q)

)
. (6)

Here g denotes the causal fundamental solution of P (D)y = δ, z the
classical solution of the homogeneous equation P (D)y = 0 satisfying the
initial conditions z(k)(0) = ck, k = 0, . . . , n − 1, and u is the unit step
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function. The solution can also be represented by the convolution of g
with the right hand side of equation (6)

T = g ∗Q(D)f +

n∑
k=1

ak

(
k−1∑
q=0

cqg
(k−1−q)

)
. (7)

(ii) For every m-times continuously differentiable function f with supp(f) ⊂
[0,∞[ the generalized function T = g ∗ Q(D)f + zu is regular and
coincides for t > 0 with the classical solution y of the causal initial
value problem for equation (2) with the initial values y(k)(0−) = ck,
k = 0, . . . , n− 1.

Proof Equation (6) has a unique solution in D′
+. Substituting y = T into

the equation shows the assertion, since for k = 1, . . . n the following relation
holds for the generalized derivatives of zu

(zu)(k) = z(k)u+
k−1∑
q=0

cqδ
(k−1−q). (8)

For m-times continuously differentiable functions f with support in [0,∞[
the classical solution of the given initial value problem on R is the convolu-
tion y = g∗Q(D)f+z. It coincides on the positive half-line with the regular
generalized function T = g ∗Q(D)f + zu. ��

Theorem 2 shows that equation (6) is the right time domain equation
for a causal initial value problem in the framework of generalized functions
in D′

+. It extends the classical setting and has already been emphasized
by [8] and [11]. This equation contains the initial values ck explicitly. The
influence of these values in an inhomogeneous part of the equation causes
the effect of the system initial state to the solution for t ≥ 0. When we want
to analyse the system evolution only for t ≥ 0, advantages of that equation
model are the following:
1) Considering the right-hand side of (6) as input x for the causal initially-
at-rest system given in D′

+ by P (D)T = x we have a linear input-output-
relation.
2) The initial value problem is now given in the convolution algebra D′

+

of causal distributions. The unilateral Laplace transform L operates in D′
+

and therefore is a tool for solving the problem. For asymptotically stable
systems and tempered inputs the Fourier transform can be used for solving
the initial value problem (6) as well.
3) Moreover, completely analogous to equation (6) initial value problems for
partial differential equations in a half-space have also been introduced and
studied within the framework of generalized functions in [11], Section V.6,
and [12], Section 15.
4) Given a persistent input with the assumed regularity properties for fr (cf.
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Section 2) when approaching zero from the left, we can also represent the
solution y for t < 0 by the parameter transform t → −t and by the solution
of the corresponding reflected initial value problem in D′

+. This allows to
find the solution for t < 0 also by the right-sided Laplace transform in the
following section. For the equation (2) with f = fr + fg as before we have

Theorem 3 For t < 0 the solution y of (2) with given values y(k)(0−) = ck
(k = 0, . . . , n−1) is the reflection y(t) = y̆(−t), where y̆ ∈ D′

+ is the solution
of

P (−D)y̆ = (Q(−D)f̆r)u+

n∑
k=1

(−1)kak

(
k−1∑
q=0

(−1)qcqδ
(k−1−q)

)
. (9)

Proof With v as in the proof of Theorem 1 and v̆(t) = v(−t) its reflection,
we observe that −v̆u is the fundamental solution of the reflected equation
P (−D)y = δ in D′

+. Its convolution with the right-hand side of (9) yields
the reflection y̆ ∈ D′

+ of the solution y for t < 0. Due to the regularity

of fr and v the convolutions (−v̆u ∗ (Q(−D)f̆r)u)
(m) disappear for m =

0, . . . , n− 1, when t → 0+. The convolution of −v̆u with the singular term
in (9) coincides with z̆u, z as in Theorem 2. Therefore the m-th derivative
of that convolution tends to (−1)mcm for t → 0+. Thus, the reflection of y̆
gives the requested initial values cm = y(m)(0−).

Remark 2 The proof shows that only sufficient regularity properties of fr
near the origin from the left are necessary to obtain the solution in the given
form.

Now, we can also solve the initial value problem for suitably trans-
formable inputs by the right-sided Laplace transform or by the Fourier
transform in the case of asymptotically stable systems.

4 Transform methods for solving linear causal initial value problems

The right-sided Laplace transform L(T ) of a generalized function T ∈ D′
+ is

defined at s ∈ C by applying the functional T to the function es(t) = e−st,
usually denoted by

L(T )(s) = T (es) (10)

provided that ex0 T is a tempered distribution for large enough x0 ∈ R and
the real part �(s) > x0 (cf. [8], [9]).

The most important properties for applications are the invertibility of
the Laplace transform and the convolution theorem L(T ∗S) = L(T ) ·L(S).
This implies immediately the Laplace transform of generalized derivatives
T ′ for transformable T ∈ D′

+

L (T ′)(s) = L (T ∗ δ′)(s) = sL(T )(s). (11)
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It does not contain a nonzero pre-initial value f(0−). The essential point,
why the Laplace transform works as a tool in solving differential equations
in the convolution algebra D′

+, is the property that we can find a unique
primitive T ∈ D′

+ by L−1(L(T ′)/s) for a given transform L(T ′). This prop-
erty as well as the convolution theorem for L are lost, if nonzero pre-initial
values, not intrinsic to the transform, are introduced as in [2] - [7].

Linear initial value problems in D′
+ with constant coefficients are ade-

quately described by equation (6) in Theorem 2. A linear combination of
the Dirac distribution δ and its derivatives has the Laplace transform

L
(

k−1∑
q=0

cqδ
(k−1−q)

)
=

k−1∑
q=0

cqs
k−1−q. (12)

Therefore, the Laplace transform of equation (6) yields for transformable
generalized functions in D′

+

P (s)L(y)(s) = Q(s)L(f)(s) +

n∑
k=1

ak

(
k−1∑
q=0

cqs
k−1−q

)
. (13)

This is the same equation in the image domain of the Laplace transform,
which is obtained with nonzero initial values in the differentiation rule (1)
for the L− transform of generalized derivatives (cf. [2] - [7]). Here the equa-
tion (13) is obtained by the usual Laplace transform L invertible on D′

+.
Of course the inverse Laplace transform of (13) gives back the generalized
functions equation (6) in the time-domain. In the case of asymptotically
stable systems and tempered inputs we can as well use the Fourier trans-
form to solve the initial value problem (6), when we replace the variable s
by iω (i2 = −1) in (13).

Example 3 (Input with support in the half-line t ≥ 0) Consider the equation

y′′ + 2/
√
LCy′ + 1/(LC)y = U1u

′′ with initial conditions y(0−) = U0,
y′(0−) = 0. It describes a simple critically damped RCL circuit (R2 =
4L/C), whose input is the step function U1u(t) and the output is the voltage

across the inductor. Its causal fundamental solution is g(t) = e−t/
√
LC tu(t);

its causal impulse response is the generalized second derivative h = g′′.
The solution y = g ∗ (U1u

′′) + z = h ∗ (U1u) + z of the initial value
problem on R according to (3) is

y(t) =

(
U1 − U1t√

LC

)
e−t/

√
LC u(t) +

(
U0 +

U0t√
LC

)
e−t/

√
LC . (14)

It fulfills y(0−) = U0 and y(0+) = U0+U1. For large negative t the solution
y(t) is certainly not a physically realistic voltage of the circuit and in general
the true system evolution in the past remains unknown. Cutting off the past
instead and considering the problem only on the half-line t ≥ 0 for the given
initial conditions, we obtain the solution T ∈ D′

+ of the generalized equation

y′′ +
2√
LC

y′ +
1

LC
y = U1u

′′ +
2U0√
LC

δ + U0δ
′ (15)
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according to (6) by

T (t) =

(
U0 + U1 +

(U0 − U1)t√
LC

)
e−t/

√
LC u(t). (16)

The Laplace transform of (15) yields L(y)(s) = 2U0

√
LC + LC(U0 + U1)s

(
√
LCs+ 1)2

,

which has the inverse Laplace transform T in D′
+.

Since the system is asymptotically stable, it has the frequency character-
istic Q(iω)/P (iω), which is a multiplier in the space of tempered distribu-
tions and has the causal inverse Fourier transform h = g′′. Thus, the initial
value problem can also be solved by the Fourier transform of equation (15).

Example 4 (Example 2 continued, cf. [1]) For stable systems with persistent
inputs as found in [1] and [2], the initial values were reasonably chosen as
if the systems were in a steady state due to their “infinitely long lasting
history”. Therefore the corresponding solution of the equation P (D)y =
Q(D)f on R for a tempered input f can be found by the Fourier transform
F of that equation without any reference to the given initial conditions.
Thus, for equation (4) in example 2 the solution y on R can be represented
as

y = F−1(ŷ) with ŷ(ω) =

(
9iω + 15

2iω − ω2
+

5

2
πδ

)
. (17)

Example 5 (Persistent input to an unstable system) We consider the differ-
ential equation

P (D)y = y(4) + 3y(2) − 6y′ + 10y = 2δ + 2u+ 1 (18)

with initial conditions y(0−) = 1, y′(0−) = 0, y(2)(0−) = 2, y(3)(0−) = −1.
According to equation (6) its solution for t ≥ 0 can be obtained by the
Laplace transform of P (D)y = 2δ + 3u + (δ(3) + 5δ′ − 7δ). The inverse of
L(y) yields for t ≥ 0

y(t) =
3

10
+

1

130
et(81 cos(t)+37 sin(t))+

1

65
e−t(5 cos(2t)−27 sin(2t)). (19)

By Theorem 3 the solution for t < 0 is the reflection of y̆, which can be
obtained by the right-sided Laplace transform of P (−D)y̆ = u+(δ(3)+5δ′+
7δ). The inverse of L(y̆) yields for t < 0

y(t) =
1

10
+

1

130
et(119 cos(t)+3 sin(t))− 1

65
e−t(cos(2t)+31 sin(2t)). (20)
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5 Conclusion

We exposed time-domain equations and solutions for causal linear initial
value problems given by differential equations with constant coefficients and
generalized inputs. The results can easily be adopted for linear first order
systems and for input types having weaker regularity properties than we
have used for convenience of the presentation. Transformmethods have been
shown to be useful for causal and persistent inputs as well. Especially, we
hope that our discussion convinces educators of linear systems and control
theory and helps in consistently teaching time-domain, Laplace and Fourier
transform methods in the framework of generalized functions.
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